No. 443 WIND-TUNNEL RESEARCH COMPARING LATERAL CONTROL DEVICES, PARTICULARLY AT HIGH ARGLES OF ATTACK VII. HANDLEY PAGE TIP AND FULL-SPAN SLOTS WITH AILERONS AND SPOILERS By Fred E. Weick and Carl J. Wenzinger Langley Memorial Aeronautical Laboratory * with ald ye Washington January, 1933 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### TECHNICAL NOTE NO. 443 WIND-TUNNEL RESEARCH COMPARING LATERAL CONTROL DEVICES, PARTICULARLY AT HIGH ANGLES OF ATTACK VII. HANDLEY PAGE TIP AND FULL-SPAN SLOTS WITH AILERONS AND SPOILERS By Fred E. Weick and Carl J. Wenzinger # SUMMARY This report is the seventh in a series of systematic tests in which various lateral control devices are compared with particular reference to their effectiveness at high angles of attack. The present tests were made with ordinary ailerons and different sizes of spoilers on rectangular Clark Y wing models with Handley Page tip and full—span slots. The tests, which were made in the 7 by 10 foot wind tunnel of the National Advisory Committee for Aeronautics, showed the effect of the control devices on the general performance of the wings as well as on the lateral control and lateral stability characteristics. It was found that the wing with Handley Page tip slots and certain combinations of the ailerons and properly located spoilers had satisfactory damping in roll and satisfactory rolling control with no adverse yawing moments at angles of attack up through 30°. With the full-span slot the conventional ailerons alone did not give rolling control of an assumed satisfactory amount at angles of attack above 10° (maximum lift occurred at 26°), but when combined with spoilers satisfactory rolling moments were obtained with no adverse yawing moments. Large spoilers tested as the sole means of lateral control on both the wing with tip slots and that with the full-span slot gave in both cases a moderate amount of rolling control at all angles of attack, together with favorable yawing moments which were extremely large, possibly too large. #### INTRODUCTION A series of systematic wind-tunnel investigations is being made by the National Advisory Committee for Aeronautics in order to compare various lateral control devices. The various devices are given the same routine tests to show their relative merits in regard to lateral controllability and their effect on the lateral stability and on airplane performance. They are being tested first on rectangular Clark Y wings of aspect ratio 6, then on wings with different plan forms, wings with high lift devices, and also on wings with such variations as washout and sweepback, which affect lateral stability. The first report of this series (reference 1, Part I) deals with three sizes of ordinary ailerons, one of these a mediumsized one taken from the average of a number of conventional airplanes and used as the standard of comparison throughout the entire investigation. Other work that has been done in this series is reported in reference 1, Parts II to VI. In these tests the only control devices that affected the lateral stability were ordinary and slotted ailerons arranged to float and floating wing-tip ailerons. The present report covers two of the series of investigations comparing lateral control devices. The first is on a wing with Handley Page tip slots, which improve the lateral stability at high angles of attack. The second is on the same wing fitted with a full-span slot, which extends the range of angles of attack below the stall and increases the maximum lift coefficient, and which therefore requires that the ailerons give greater values of the rolling-moment coefficient at the high angles of attack in order to provide the same degree of lateral control. The form of the slat and its location with the slat open, which are the same for both the tip and full-span slots, were taken directly from the optimum results of previous tests. (Reference 2.) • The length of the tip slots was taken as that which gave damping in roll to the highest angle of attack. In tests described in reference 3, this length was 50 per cent of the semispan. The slots were assumed to be automatic in action, being closed at the low angles of attack and open at an angle of attack of 10° or above. The wing with both tip and full-span slots was tested with the standard average-sized ailerons and with these same ailerons rigged up 10° when noutral in order to improve the yawing moments. (See reference 1, Part III.) In addition, tests were made with the ailerons combined with spoilers and interceptors, and large spoilers were tested alone as the sole means of lateral control. ## APPARATUS Model.- The wing model, which was constructed of laminated mahogany, was basically a Clark Y airfoil 10 inches in chord and 60 inches in span. (Fig. 1.) The slats were made of aluminum alloy and were attached to the main wing by means of small metal clips. The specified ordinates for both the main airfoil and the slat are given in Table I; the models were constructed to within ±0.005 inch of those values. The spoilers were the same ones tested previously under reference 1. Part V, being thin metal plates hinged in such a manner as to be flush with the surface of the airfoil when closed. The medium-sized spoilers, 0.07 chigh, were hinged at the rear so that the hinge moment could be balanced against that of the ailerons to give a small control force. (Fig. 2.) The best location of the hinge axis back of the leading edge was found in previous tests. (Reference 1, Part V, and reference 4.) This location was far enough back of the slot so that the spoiler could be operated with the slot open or closed. The length of the spoiler in the case with the tip slot was made the same as that of the slot - 50 per cent of the semispan. With the full-span slot the medium-sized spoilers were made the same length as for the first tests on a plain wing, 40 per cent of the semispan. (Reference 1, Part V.) As shown in Figure 2, they were located with the outer tips 20 per cent of the semispan inboard from the tip of the wing. This was the position that gave the highest rolling moment at the angle of attack of maximum lift in the preliminary tests, the results of which are given in Figure 3. An interceptor, which is considered here as a small spoiler intended essentially to close off the slot at high angles of attack, was proportioned as closely as possible to the latest form of Handley Page interceptor, as illustrated in references 5 and 6. (Front position, fig. 4.) Inasmuch as previous N.A.C.A. tests (reference 4) had indicated that better results might be expected with the interceptor located farther back from the slot, tests were also made with it in the rear location as shown in Figure 4. In both positions it would be covered by the slat when the slot was closed. These interceptors were tested only with the tip slots for they were thought too small to give the degree of control assumed satisfactory with the full-span slot. The large spoiler used alone is shown in Figure 5. It is located entirely to the rear of the slot and would operate independently of the slot whether it were open or closed. Wind tunnel. All the present tests were made in the N.A.C.A. 7 by 10 foot open-jet wind tunnel. In this tunnel the model is supported in such a manner that the forces and moments at the quarter-chord point of the mid section of the model are measured directly in coefficient form. For autorotation tests, the standard force-test tripod is replaced by a special mounting that permits the model to rotate about the longitudinal wind axis passing through the midspan quarter-chord point. This apparatusis mounted on the balance, and the rolling-moment coefficient can be read directly during the forced-rotation tests. A complete description of the above equipment is given in reference 7. TESTS The tests were conducted in accordance with the standard procedure, and at the dynamic pressure and Reynolds Number employed throughout the entire series of investigations on lateral control. (Reference 1.) The dynamic pressure was 16.37 pounds per square foot, corresponding to an air speed of 80 miles per hour at standard density, and the Reynolds Number was 609,000, based on the chord of the basic airfoil section. The regular force tests were made at a sufficient number of angles of attack to determine the maximum lift coefficient, the minimum drag coefficient, and the drag coefficient at $C_{\rm L}=0.70$, which is used to give a rate- of-climb criterion. Free-autorotation tests were made to determine the angle of attack above which autorotation was self-starting with all controls neutral. Forced-rotation tests were also made in which the rolling moment was measured while the wing was rolling at the rotational velocity corresponding to $\frac{p!b}{2 \ V} = 0.05$, the highest rate likely to be obtained in gusty air, and at angles of yaw of both 0° and -20° . The accuracy of the results in this report is the same as that in Part I (reference 1) except for angles of attack above the burble. It is considered satisfactory at all angles of attack for the wing with both tip and full-span slots, whereas with the plain wing accurate measurements could not be made just beyond the stall. Assumed control movements. The force tests were made with a sufficient number of spoiler and aileron deflections to give data for the four types of aileron movement used in the tests with the plain wing (reference 1, Part I): equal up-and-down, average differential (No. 1), extreme differential (No. 2), and upward movement only. The relative displacements of the two ailerons are given in Figure 6 and the assumed control linkages in Figure 7. In the case in which spoilers and ailerons are used in combination, the maximum deflection of the spoiler is taken as 90° and the movement is considered proportional to that of the up aileron. The maximum deflection of the large spoiler when used alone is also assumed to
be 90° for the present tests. Although the previous tests of this spoiler on a plain wing indicated no appreciable gain from deflections above 60° , the present tests with the Handley Page slots showed a definite increase in rolling moment from 60° to 90° . #### RESULTS Coefficients. - The force-test results are given in the form of absolute coefficients of lift and drag and of the rolling and yawing moments: $$C_{L} = \frac{\text{lift}}{\text{q S}}$$ $$C_{D} = \frac{\text{drag}}{\text{q S}}$$ $$C_{l} = \frac{\text{rolling moment}}{\text{q b S}}$$ $$C_{n} = \frac{\text{yawing moment}}{\text{q b S}}$$ where S is the total wing area with slots closed, b is the wing span, and q is the dynamic pressure. The coefficients as given above are not corrected for tunnel, wall effect. They are obtained directly from the balance and refer to the wind (or tunnel) axes. In special cases in the discussion where the moments are used with reference to body axes, the coefficients are not primed. Thus the symbols for the rolling and yawing moment coefficients about body axes are C₁ and C_n. The results of the forced-rotation tests are given, also about the wind axes, by a coefficient representing the rolling moment due to rolling: $$c_{\lambda} = \frac{\lambda}{q b s}$$ where λ is the rolling moment measured while the wing is rolling, and the other factors have the usual significance. This coefficient may be used as a measure of the degree of lateral stability or instability of a wing under various rolling conditions. In the present case, it is used to indicate the characteristics of a wing when it is subjected to a rolling velocity equal to the maximum likely to be encountered in controlled flight in very gusty air. This rolling velocity may be expressed in terms of the wing span as $$\frac{p^{\dagger b}}{2 \ V} = 0.05$$ where V is the air speed at the center section of the wing, and p! is the angular velocity in roll about the wind axis. Tables. The complete results of the tests for the wing with tip slots are given in Tables II to V, inclusive. Tables II and III give the values of C_L , C_D , C_l , and C_n for all control deflections and for O^0 and $-2O^0$ yaw, respectively. Table IV gives values of C_λ at $\frac{p \cdot b}{2 \cdot v} = 0.05$, and values of $\frac{p \cdot b}{2 \cdot v}$ over the first part of the free-autorotation range for O^0 yaw with the allerons neutral. Table V gives values of C_λ at $\frac{p \cdot b}{2 \cdot v} = 0.05$ with $-2O^0$ yaw. In like manner the results obtained with the full-span slot are given in Tables VI to IX. # DISCUSSION IN TERMS OF CRITERIONS #### SECTION I. TIP SLOTS A series of criterions was developed in Part I (reference 1) for the purpose of comparing the effect of various ailerons or other lateral control devices on the general performance of an airplane, on its lateral controllability, and on its lateral stability. The ailerons and spoilers used in the present tests with their various movements are compared with each other by means of these criterions in Table X. In addition, values are included from reference 1 for the ailerons on a plain unslotted wing. #### General Performance (Controls Neutral) Wing area required for desired landing speed.— The value of the maximum lift coefficient is used as a criterion of the wing area required for the desired landing speed, or conversely for the landing speed obtained with a given wing area. The value of the maximum lift coefficient was slightly lower with the tip slots than with the plain unslotted wing, but, as shown in Figure 8, the lift coefficient with the slotted wing is maintained at a relatively high value up to a much higher angle of attack, and has a second peak as high as the first at an angle of attack of 32°. When it was decided to make tests on the tip-slotted wing with the ailerons deflected up 10° when neutral to improve the yawing moments, it was thought that possibly the effect of the tip slot in delaying the stall would eliminate the loss in maximum lift accompanying the 10° upward deflections on both ailerons of a plain wing. The tests showed, however, that the tip slots did not help in this respect. The maximum lift coefficient with the ailerons rigged up was, as in the case of the plain wing, 6 per cent lower. Speed range. The ratio C_{Lmax}/C_{Dmin} is a convenient figure of merit for comparison of the relative speed range obtained with various wings. The minimum drag coefficient in this ratio has been taken as the value for the plain wing, the slot being assumed closed and the resultant wing of perfect form for the high speed. The value of C_{Lmax}/C_{Dmin} is slightly lower for the wing with tip slots than for the plain wing on account of the lower values of C_{Lmax} . It is still lower with the ailerons rigged up 10° when neutral. Rate of climb. In order to establish a suitable criterion for the effect of the wing and the lateral control devices on the rate of climb of an airplane, the performance curves of a number of types and sizes of airplanes were calculated, and the relation of the maximum rate of climb to the lift and drag curves was studied. This investigation showed that the L/D at $C_{\rm L} = 0.70$ gave a consistently reliable figure of merit for this purpose. Inashuch as the slots are assumed closed at this lift coefficient and the wing form is assumed perfect, the value of this criterion is the same for the wing with tip clots as for the plain wing. Lateral Controllability (Maximum Assumed Control Deflection) Rolling criterion. The rolling criterion upon which the control effectiveness of each of the aileron arrangements is judged is a figure of merit that is designed to be proportional to the initial acceleration of the wing tip, following a deflection of the ailerons from neutral, regardless of the air speed or the wing plan form of an airplane. Expressed in coefficient form for a rectangu- lar monoplane wing, the criterion becomes $$RC = \frac{C_1}{C_L}$$ where C₁ is the rolling-moment coefficient about the body axis due to the ailerons. The numerical value of this expression that has been found to represent satisfactory control conditions is approximately 0.075. A more detailed explanation of RC and its more general form, which is applicable to any wing plan form, is given in Part I. The comparison of the ailerons on the basis of this criterion is given in Table X at four representative angles of attack; namely, 0°, 10°, 20°, and 30°. The first angle, 0°, represents the high-speed attitude; $\alpha=10^\circ$ represents the highest angle of attack at which entirely satisfactory control with ordinary aflerons can be maintained; $\alpha=20^\circ$ represents the condition of greatest instability in rolling for the plain unslotted Clark Y wing, and is probably the greatest attainable angle of attack with most present-day airplanes in a steady glide; and finally, $\alpha=30^\circ$ is representative of the highest angles of attack at which the present wing with tip slots has satisfactory control and stability. At $\alpha=0^\circ$ all the control devices tested gave more control than necessary, the lowest being nearly double the assumed satisfactory value. At this angle of attack the slots are assumed closed and the condition the same as for the plain wing. At $\alpha=10^{\circ}$ the slots are assumed open and all the plain aileron arrangements gave reasonably close to the assumed satisfactory value of RC, 0.075. This condition is also true for the large spoiler alone and the combined ailerons and interceptor with the latter in its original position. The combinations of ailerons and spoilers, including the interceptor in its rear position, gave rolling-control criterions in excess of the satisfactory value. A more rigorous comparison could, therefore, be made by decreasing the control sizes or deflections to give approximately the satisfactory value of RC at $\alpha=10^{\circ}$, but this has not been done because of the added complications. At $\alpha=20^\circ$, which represents the highest angle of attack that can be maintained by an average airplane in a glide, the plain ailerons operating behind the slot did not give satisfactory values of RC with any of the four movements. The highest value, about 80 per cent of the satisfactory, was given by the average differential movement with standard rigging and by equal up-and-down movement with the ailerons rigged up 10° when neutral. (The actual maximum position of the ailerons in both of these cases is exactly the same.) The extreme differential and up-only movements, which gave the highest values of RC with the plain wing, gave definitely lower values with the wing having tip slots. The interceptor in its original location combined with ailerons decreased the rolling moments slightly as compared with the ailerons alone at an angle of attack of 200 for the equal up-and-down and the average differential movements, but increased them slightly when used with the extreme differential and up-only movements. In no case, however, did the combination give values as high as those obtained with the ailerons alone having the average differential movement. When moved back from the slot to become what is here considered a small spoiler, the effect of the interceptor was greatly increased and a satisfactory value of RC was obtained with equal up-anddown aileron movement. (This is the only movement listed in Table X, but the maximum deflections corresponding to the other movements were tested and the data are given in Tables II and III.) This improvement substantiates the results of reference 3 and shows that the proper action is to spoil the smooth flow over the upper surface of the wing rather than to intercept the air flowing through the slot. The 0.07 c high spoiler when combined with the equal up-and-down or the average differential movement gave substantially greater
than the assumed satisfactory value of RC at an angle of attack of 20°, but gave a value that is just satisfactory with the extreme differential movement. The large spoiler alone gave 91 per cent of the assumed satisfactory value. At the extreme angle of attack of 30° every control combination tested on the wing with tip slots gave more than one-half the satisfactory value of RC, a great improvement over the values obtained without the slots. Satisfactory values were given by the spoiler and aileron combinations with equal up-and-down or average differential movement of the ailerons. The large spoiler alone gave three-fourths of the satisfactory value. Lateral control with sideslip. If a wing is yawed 20°, a rolling moment is set up that tends to raise the forward tip with a magnitude that is greater at very high angles of attack than the available rolling moment due to conventional ailerons. The limiting angle of attack at which the ailerons can balance the rolling moment due to 20° yaw represents the greatest angle of attack that can be held in an average sideslip. This angle is tabulated for all the aileron and spoiler arrangements as a criterion of control with sideslip. With the wing-tip slots and ailerons alone the equal up-and-down deflection gave control against 20° yaw to the same angle of attack as the same aileron on the plain wing, namely 20°, but the extreme differential and up-only movements gave control to substantially higher angles of attack, 32° and 33°, respectively. In addition, the interceptors in their original location did not affect this angle of attack, but when moved back increased it slightly. The 0.07 c high spoilers and ailerons gave control up to high angles of attack with all the aileron movements, the angle being 38° with both the average and the extreme differential movements. The large spoiler alone gave control up to an angle of attack of 34°. Yawing moment due to ailerons. The desirable yawing moment due to ailerons varies to some extent with the type of airplane that is being considered. For a highly maneuverable military or acrobatic machine, complete independence of the controls as they affect the turning moments about the various body axes is no doubt a desirable feature. On the other hand, for large transport airplanes and for machines to be operated by relatively inexperienced pilots, a favorable yawing moment of the proper magnitude would probably be an appreciable aid to safe flying. Finally, it is obvious that a yawing moment tending to turn the airplane out of its normal bank is never desirable. With the ailerons alone the yawing moments were about the same with the slotted wing as with the plain unslotted wing, the adverse yawing moments at high angles of attack being greater than could be overcome with an average rudder. The adverse yawing moments were reduced considerably but not entirely eliminated by rigging the ailerons up 10° when neutral. They could be entirely eliminated by rigging the ailerons up further, but this would require a rather large sacrifice in a lower maximum lift coefficient and a higher minimum drag coefficient. The yawing moments were not improved by the addition of the interceptor in its original position at any of the usual angles of attack through 20°, but definitely favorable yawing moments were obtained at an angle of attack of 30°. With the rearward position, however, substantially favorable yawing moments, with no adverse ones with any deflection, were obtained at all angles of attack at which the slot would be open (assumed as 10° and above). The combination of the 0.07 c high spoiler and the ailerons gave large favorable yawing moments, with no adverse ones, at all angles of attack whether the slot was assumed open or closed. The large spoiler alone gave very large, possibly too large, favorable yawing moments at all angles of attack. In this connection, the desirable magnitude of the favorable yawing moment is not known within a reasonable degree of accuracy, and flight tests to establish this point would be highly desirable. Lateral Stability (Controls Neutral) Angle of attack above which autorotation is selfstarting. This criterion is a measure of the range of angles of attack above which autorotation will start from an initial condition of practically zero rate of rotation. The limiting angle of attack was raised from 18° for the plain Clark Y wing to 33° for the wing with tip slots, which puts it well above the range of angles of attack that can be maintained by average conventional airplanes. Stability against rolling caused by gusts.— Test flights have shown that in severe gusts a rolling velocatty such that $\frac{p \cdot b}{2 \cdot V} = 0.05$ may be obtained. Consequently, the rolling moment of a wing due to rolling at this value of $\frac{p \cdot b}{2 \cdot V}$ gives a measure of its stability charac- teristics in rough air. In the present case, the angle at which this rolling moment becomes zero is used as a more severe criterion than the previously mentioned angle at which autorotation is self-starting, to indicate the practical upper limit of the useful angle-of-attack range. With 0° yaw, the angle of attack for initial instability is 32° for the wing with tip slots as compared with 17° for the plain unslotted wing; but with 20° yaw the angle is increased only a small amount, from 11° to 14°, by means of the slots. The above criterion shows the critical range below which stability is such that any rolling is damped out, and above which instability exists. The last criterion, maximum Cλ, indicates the degree of this instability. With 0° yaw, the slotted wing had a much weaker tendency to autorotate, and the maximum tendency occurred at a very high angle of attack - about 40°. As shown in Figure 9, the damping in roll is practically zero for a very small range of angles of attack near 20°. As shown by the results of reference 3, the damping at this point can be increased if desired, by lengthening the slots slightly. The maximum autorotational moment with 20° yaw is of importance only in the condition in which the airplane is skidded and the forward wing tip is rolled upward or the rear tip downward by means of a gust. This autorotational moment, which is large with the plain Clark Y wing, is reduced somewhat by means of the tip slots; but of greater importance is the fact that it does not occur except at angles of attack above the range that can be maintained by the average airplane. ## Control Force Required The hinge moments were not measured in the tests with the slots because it was thought that they should not differ greatly from the moments for the same allerons and spoilers on the plain wing given in reference 1, Part V. Those results show that with the proper combinations of spoilers and ailerons, it is possible to obtain very small control forces. # SECTION II. FULL-SPAN SLOT Criterions similar to those used in the previous section are given for the wing with the full-span slot in Table XI. General Performance (Controls Neutral) Wing area required for desired landing speed. The value of the maximum lift coefficient was increased from 1.27 with the unslotted Clark Y wing to 1.83 with the full-span slot. (Fig. 10.) With the ailerons rigged up 10° when neutral, the value was 5 per cent lower. Speed range. With the slot assumed closed and the wing of perfect form at the angle of attack for minimum drag, the ratio $C_{\rm Lmax}/C_{\rm Dmin}$ was 44 per cent higher for the fully slotted wing than for the plain wing and 51 per cent higher for the fully slotted wing than for the one with tip slots covering 50 per cent of the span. The value of the speed-range ratio was somewhat lower with the ailerons rigged up 10° when neutral. Rate of climb. Inasmuch as the slots are assumed closed for the climbing condition and the wing is assumed to be of perfect Clark Y form, the rate of climb would be the same with the full-span slot as with the plain unslotted wing. Lateral Controllability (Maximum Assumed Control Deflection) Rolling criterion. At the angle of attack of 0° with the slot assumed closed, conditions are the same as for the unslotted wing. At this angle of attack all the devices tested gave more control than necessary. At $\alpha=10^{\circ}$ with the slot open, all of the plain alleron arrangements and also the large spoilers alone gave very close to the assumed satisfactory value of RO of 0.075. The combinations of allerons and spoilers gave values greatly in excess of the satisfactory value with all four aileron movements. At $\alpha = 20^{\circ}$, which represents the highest angle of attack which can be obtained by an average airplane in a glide, but which is well below the stall with the fullspan slot, none of the plain aileron arrangements gave satisfactory values of RC, the values ranging between one-half and two-thirds of the satisfactory value. With all movements except the equal up-and-down, the ailerons alone gave less control on the fully slotted wing than on the plain wing, which is stalled at this angle of attack. The 0.07 c high spoiler when combined with the ailerons with either equal up-and-down or average differential movements gave greater than the assumed satisfactory value of RC at $\alpha=20^{\circ}$. The values with the extreme differential and up-only movements were not quite satisfactory. These conditions indicate that the downward aileron movement is more effective on a fully slotted wing than on a plain wing. The large spoiler alone gave about fourfifths of the assumed satisfactory value of RC. At $\alpha=30^\circ$, which is beyond the stall of the slotted wing, none of the control combinations tested gave values of RC which were entirely satisfactory, but some approached it fairly closely. The highest value, 92 per cent of the assumed satisfactory RC, was obtained with the 0.07 c spoilers combined with the ailerons with the average differential movement. The large spoiler
alone gave about the same amount of control at 30° as at 20° . Lateral control with sideslip.— The maximum angle of attack at which the allerons alone would balance the rolling moment due to 20 yaw ranged from a minimum of 27°, or just above the stall of the completely slotted wing, to a maximum of 32°; the combined spoilers and allerons gave control up to somewhat higher angles of attack, 35° being obtained with the up-only movement. Control was also obtained up to an angle of 35° with the large spoiler alone. Yawing moment due to controls. With the ailerons alone the yawing moments were about the same with the full-span slot as with the unslotted wing. The adverse yawing moments above the stall of the fully slotted wing were greater than can be overcome with an average rudder. The adverse yawing moments were eliminated below the stall and reduced above the stall by rigging the ailerons up 10° when neutral; but the values above the stall were still unsatisfactorily high. The spoiler-aileron combination gave rather large favorable yawing moments at all angles of attack, with no adverse ones. The same is true for the large spoiler alone, but in that case the so-called favorable values were extremely large, possibly too large for satisfactory control. ### Lateral Stability (Controls Neutral) Angle of attack above which autorotation is selfstarting. The limiting angle was raised from 18° for the unslotted Clark Y wing to 25° for the Clark Y wing with a full-span slot. This value is above the limiting angle of attack which can be maintained in a glide with an average conventional airplane, but is slightly below the angle of attack for maximum lift of the fully slotted wing. Stability against rolling caused by gusts.— With O yaw the angle of attack for initial instability with a rolling velocity such that $\frac{D'b}{2V} = 0.05$ was the same as the self-starting value, 25°. This value was 17° for the unslotted wing and 32° for the wing with tip slots covering half the span. With 20° yaw the angle was increased from 11° for the plain wing and 14° for the wing with tip slots to 19° for the wing with a full-span slot. At 0° yaw the fully slotted wing had a maximum autorotational tendency (value of C_{λ}) which was definitely lower than the average values measured for the plain unslotted wing. It was about the same as the lowest measured for several plain unslotted wings which vary throughout a fairly wide range because of inaccuracies of form, even though built within close limits to the same dimensions. With the fully slotted wing the maximum value of C_{λ} occurred at a high angle of attack, about 35°. (Fig. 11.) At 20° yaw the value of C_{λ} was about the same for the fully slotted wing as for the plain unslotted one. #### CONCLUSIONS # SECTION I. TIP SLOTS - 1. The general performance of the wing with tip slots was slightly poorer than that of the plain wing. - 2. Ordinary ailerons gave somewhat greater rolling control at high angles of attack on the slotted wing than on the plain wing, but it was below the assumed satisfactory value, and the adverse yawing moments were not reduced. - 3. Rigging the ailerons up 10° gave improved yawing moments but slightly poorer general performance. - 4. The Handley Page type interceptor was found to give much more favorable rolling and yawing moments when it was moved back a certain distance from the slot and became in effect a small spoiler. - 5. The 0.07 c high spoiler when combined with the ailerons gave rolling control in excess of the assumed satisfactory value, together with favorable yawing moments at all angles of attack through 30° . - 6. The large spoiler alone gave a moderate amount of rolling control, together with extremely large favorable yawing moments, possibly too large. - 7. The Clark Y wing model with Handley Page tip slots as tested had no autorotational tendency below an angle of attack of 32°, # SECTION II. FULL SPAN SLOT - 1. The general performance of the wing with fullspan slot was improved considerably over that of the unslotted wing and that of the wing with tip slots. - 2. Ordinary ailerons gave rolling control definitely below the assumed satisfactory value at angles of attack well below the stall of the fully slotted wing. Fairly large adverse yawing moments occurred with equal up-and-down deflection, but these were reduced somewhat by the differential movements. - 3. Rigging the ailerons up 10° when neutral eliminated the adverse yawing moments below the stall but not above. - 4. Satisfactory rolling control at angles of attack up to the stall of the slotted wing was given by spoilers combined with ailerons having equal up-and-down or average differential movement. The control was within close limits of the assumed satisfactory value several degrees beyond the stall. - 5. The large spoiler alone gave a moderate amount of rolling control, together with extremely large favorable yawing moments, possibly too large. - 6. The wing with full-span slot had autorotational tendencies at angles of attack above 25°, but the maximum autorotational tendency was definitely lower than the average for plain Clark Y wings. Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., October 25, 1932. #### REFERENCES - 1. Wind-Tunnel Research Comparing Lateral Control Devices, Particularly at High Angles of Attack. - I. Ordinary Ailerons on Rectangular Wings. T.R. No. 419, N.A.C.A., 1932, by Fred E. Weick and Carl J. Wenzinger. 통하는 어느 없는 걸음을 가지 않을 때문에 걸음 - II. Slotted Allerons and Frise Ailerons. T.R. No. 422, N.A.C.A., 1932, by Fred E. Weick and Richard W. Noyes. - III. Ordinary Ailerons Rigged Up 10° When Neutral. T.R. No. 423, N.A.C.A., 1932, by Fred E. Weick and Carl J. Wenzinger. - IV. Floating Tip Ailerons on Rectangular Wings. T.R. No. 424, N.A.C.A., 1932, by Fred E. Weick and Thomas A. Harris. - V. Spoilers and Ailerons on Rectangular Wings. T.R. No. 439, N.A.C.A., 1932, by Fred E. Weick and Joseph A. Shortal. - VI. Skewed Ailerons on Rectangular Wings. T.R. No. 444, N.A.C.A., 1932, by Fred E. Weick and Thomas A. Harris. - 2. Wenzinger, Carl J., and Shortal, Joseph A.: The Aero-dynamic Characteristics of a Slotted Clark Y Wing as Affected by the Auxiliary Airfoil Position. T.R. No. 400, N.A.C.A., 1931. - 3. Weick, Fred E., and Wenzinger, Carl J.: Effect of Length of Handley Page Tip Slots on the Lateral-Stability Factor, Damping in Roll. T.N. No. 423, N.A.C.A., 1932. - 4. Weick, Fred E., and Wenzinger, Carl J.: Preliminary Investigation of Rolling Moments Obtained with Spoilers on Both Slotted and Plain Wings. T.N. No. 415, N.A.C.A., 1932. - 5. Alston, R. P.: Stalled Flight Tests on a Bristol Fighter Fitted with Auto Control Slots and Interceptors. R. & M. No. 1338, British A.R.C., 1930. - 6. Lachmann, G. V.: Control Beyond the Stall. Jour. Roy. Aero. Soc., Vol. XXXVI, No. 256 (Apr., 1932), pp. 276-338. - 7. Harris, Thomas A.: The 7 by 10 Foot Wind Tunnel of the National Advisory Committee for Aeronautics. T.R. No. 412, N.A.C.A., 1931. # N.A.C.A. Technical Note No. 443 TABLE I. ORDINATES OF CLARK Y WING WITH HANDLEY PAGE SLOTS | Basi | c Clark | Y | Cut-o | ff Clar | k Y | | Slat | | |---------------|---------|-------|---------|--|---------------|---------|-------|-------| | Per cen | | | · | t basic | | Per cen | | chord | | Station | Upper | Lower | Station | Upper | Lower | Station | Upper | Lower | | 0 | 3.50 | 3.50 | 0 | - | _ | 0 | 11.60 | 11.60 | | 1.25 | 5.45 | 1.93 | 1.85 | 1.65 | 1.65 | 1.25 | 15.80 | 7.24 | | 2.50 | 6.50 | 1.47 | 2.50 | a | 1.47 | 2.50 | 17.70 | 4.56 | | 5,00 | 7.90 | .93 | 5.00 | a | .93 | 5.00 | 19.85 | .00 | | 7.50 | 8.85 | . 63 | 7.50 | æ | .63 | 7.50 | 21.00 | 1,30 | | 10.00 | 9.60 | .42 | 10.00 | a | .42 | 10.00 | 21.60 | 2.43 | | 15.00 | 10.69 | .15 | 13.00 | 10.07 | _ | 15.00 | 22.55 | 4.60 | | 20.00 | 11.36 | .03 | 15.00 | 10.69 | .15 | 20.00 | 23.15 | 6.35 | | 30.00 | 11.70 | 0 | 20.00 | 11.36 | .03 | 30.00 | 23.20 | 9.27 | | 40.00 | 11.40 | 0 | 30.00 | 11.70 | 0 | 40.00 | 22.10 | 10.94 | | 50.00 | 10.52 | 0 | 40,00 | 11.40 | 0 | 50.00 | 20.05 | 11.66 | | 60.00 | 9.15 | 0 | 50,00 | 10.52 | 0 | 60.00 | 17.25 | 11.35 | | 70.00 | 7.35 | 0 | 60.00 | 9.15 | 0 | 70.00 | 13.78 | 10.14 | | 80.00 | 5.22 | 0 | 70.00 | 7.35 | 0 | 80.00 | 10.00 | 7.73 | | 90.00 | 2.80 | 0 | 80.00 | 5.22 | 0 | 90.00 | 5.68 | 4.38 | | 95.00 | 1.49 | 0 | 90.00 | 2.80 | 0 | 95.00 | 3.52 | 2.12 | | 100.00 | .12 | 0 | 95.00 | 1.49 | 0 | 100.00 | 1.20 | 0 | | | | | 100 | .12 | 0 | | | | | Leading = 1.5 | | dius | from st | adius of
cation 1
13.00
conding | .85 to
and | | | | TABLE II. FORGE TESTS. 10 BY 80 INCH CLARK Y WIEG WITH 50 PER CENT b/2 HANDLEY PAGE TIP SLOTS OPEN AT ALL ANGLES OF ATTACK - PLAIN AILERONS $Y_{AW} = 0^{\circ}$ R.W. = 609,000 Velocity = 80 m.p.h. | | | | | | I & T | r = 0° | R.H | . = 60 | 000,000 | Aeto | oity = | - 80 m. | .p.n. | | | | | | | |---|---|--|----------------|--|---------------|--|---|--------|---|---------------|--|--|---|---|---------------|--|---
----------------|----------------| | | | | | | PLAI | M VII | erons | 25 PE | ROENT | o Bi | 40 PI | R CENT | ъ/2 | | | | | , — | | | | | æ | -5° | 00 | go | 100 | 150 | 170 | 180 | 190 | 300 | 230 | 350 | 30° | 310 | 330 | 400 | 500 | 600 | | 5 up | 5 dn. | | | | | | ilero | ns lo | rked - | Moutre | ıl | | | | | | | | | | 0° | 88 | 000
110 | -0.040
.057 | 0.313 | 0.728
.057 | 889.0
880. | | 1.182 | 1.178 | 1.145
.239 | 1.065
.324 | 1.045
.552 | 1.110
.419 | 1.185 | 1.206
.555 | 1.208
.575 | 1.073
.774 | 0.885
.938 | 0.718
1.091 | | | | | | | | | Equ | al up- | -and-d | 3W71 | | | | | | | | | | | 20°
20°
25°
35°
30° | 200
250
250
250
200
300 | 07 n n n n n n n n n n n n n n n n n n n | | .058
003
.070
008
.078
003 | | .063
015
.071
017
.079
019 | 024
024 | | .047
024
.058
037
.059
028 | | .048
027
.054
031
.056
031 | .048
026
.051
031
.055
033 | .037
028
.047
033
.054
038 | .028
029
.037
036
.045
042 | | .033
030
.031
036
.037
041 | .011
081
.015
086
.019
030 | | | | | | | | | | A. | verage | diff | erenti | .1 No. | 1 | | | | | | | | | | 10°
10°
20°
20°
30°
35°
35° | 810
810
130
130
150
150 | 2 87 87 87 8 | | .032
001
.052
.000
.089
.002
.075 | | .031
007
.054
010
.064
011
.089
009 | 018 | | .022
013
.044
019
.055
021
.057
019 | | .027
014
.045
023
.058
025
.060
024 | .019
014
.040
023
.054
028
.057
024 | .016
014
.035
024
.050
028
.053
027 | .010
015
.028
025
.042
031
.048
031 | | .006
014
.030
034
.035
031
.040 | .004
010
.011
017
.020
024
.027
025 | | | | | | | | | | £ | xtreme | diff | renti | el No. | 2 | | | | | | | | | | 10°
10°
20°
30°
30°
40°
40°
50° | 70
70
130
130
140
1110
70 | 2 62 64 64 64 6 | | .030
001
.051
.000
.087
.003
.077
.007 | | .028
006
.051
010
.059
009
.069
006 | .036
006
.050
.058
012
.069
007 | | .020
011
.041
017
.053
019
.058
018
.062
012 | | .034
012
.045
031
.056
021
.048
035
.049
019 | .017
012
.037
021
.081
022
.058
031
.058 | .014
012
.034
023
.049
025
.058
024
.059
018 | .009
013
.028
024
.041
028
.048
027
.052
025 | | .004
012
.019
023
.034
027
.041
027 | .003
008
.011
016
.030
031
.033
025
.019
015 | | | | | | | | | | | | Up- | -only | | | | | | | | | | | | 10°
10°
20°
30°
30°
40°
40°
50°
60° | 666666666666 | 5000000000000 | • | .021
.000
.034
.005
.005
.005
.009
.073
.012 | | .018
003
.035
008
.043
004
.063
001
.069 | .041
007
.050
006 | | .012
006
.029
010
.039
010
.046
009
.063
008 | | .017
007
.034
013
.030
012
.043
015
.043
014
.048
013 | .052 | .006
007
.028
013
.038
015
.044
014
051
055
013 | .052 | | .001
.007
.015
014
.030
018
.048
018
.048
018 | | | | | | | | | | | | | Down | n-only | | | | | | | | | | | | 00000000 | 5°
5°
10°
10°
20°
20°
30° | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | .010
001
.016
001
.022
004
.029
007 | | .010
003
.017
005
.029
011
.039
016 | 004
.016
007
.026 | | .013
004
.018
008
.017
014
.021
080 | | .009
005
.018
009
.019
016
.018
020 | .003
004
.007
008
.012
015
.015 | 004
.005
008
.009
016 | -,008
.006
016
.008 | | .002 | 004
.001
007 | | | TABLE II. (Cont'd) FORGE TESTS. 10 BY 60 INCH CLARK Y WING WITH 60 PER CENT b/2 HANDLEY PAGE TIP SLOTS OPEN AT ALL ANGLES OF ATTACK - PLAIN ALLERONS Yaw = 00 R.M. = 609,000 Velocity = 80 m.p.h. | | | | | | | Z = 00 | | | 09,000 | | city = | | | | | | | | | |---|---|---|---------------|---|---------------|---------------------|---------------------|-------|---------------------|--|---------------------|---------------------|--------------------|---------------------|-------|--------------------|---------------------|----------|-------------| | | | | | | PLI | IN AIL | | | R CENT | | 40 PE | | ъ/2 | | | | | | | | <u> </u> | ##UTRAL POSITION RIGGED UP 10° d5° 0° 7° 100 15° 17° 18° 19° 30° 23° 25° 30° 51° 32° 40° 50° 80° 5, up 6, dn. Ailerone locked - Neutral rigged up 10° | <u> </u> | | æ | -80 | G | 70 | | | | | ــــــــــــــــــــــــــــــــــــــ | | | 250 | 300 | 87. | 320 | 400 | 509 | | | ಕ್ಕೆ ಭಾ | δ, dn. | | | | - | Aile | | | | ral ri | gged u | 100 | | | | | | | | | °° | 00 | 양 | -0.150
066 | 0.200 | 0.691 | 0.892 | 1.088 | 1.090 | 1.090 | 1.070
.208 | 1.055
.255 | .965 | 1.038
.371 | 1.105
.474 | 1.120 | 1.133 | 1.028
.724 | 0.872 C | | | | | ىچى | | <u>' </u> | | Equa | L up-a | nd-do | wn (Fr | on rig | ged up | 10°) | | | | | | | | | 300 | 30° | 02; | | .087 | | .057
008 | .058
014 | | .051 | | .055
025 | .048 | .048
025 | .040
028 | | .035
038 | .031 | | | | 25°
25° | 25°
25°
35° | 07 | | .075 | | 690 | .068
810 | | 019 | | .080 | .057 | .053 | .046 | | .040 | .027
025 | | | | 300 | 300 | 90000 B | | .005 | | 81
011 | .077
018 | | 084 | | .050
031 | .061
037 | .080
880 | .051
034 | | .045
035 | .034 | 1 1 | | | | | | | | Ezt | reme d | iffere | ntial | No. 2 | (from | rigge | l up l | 00) | | | | | | | | 100 | 70
70 | 0,1 | | .035 | | .031
004 | .031
007 | | 009 | | .031
010 | | .019 | 015 | | .013
012 | .008 | | | | 300 | 120 | 0,1 | | .059
.005 | | .047
003
.058 | 007 | j | 010 | | | .039
015 | .039
018 | .035
081
.042 | | .038
022
040 | .020
017
.031 | | | | 30°
30°
30°
40°
40° | 140 | 07 | | .005 | | 003
.064 | .055
008
081 | | .050
012
.055 | | .043
019
.045 | | .048
018 | 022
047 | • | 023 | -:033 | | | | 500 | 1110 | 0 <u>.</u> | | .013 | | .001
.065 | 003 | 1 | 006 | | 015 | 011
.049 | 014
.052 | 018
.049 | ! | 019
.048 | 014 | | | | 50° 7° 01° 01° 008 001004 0.08 0.08 0.01004 0.08 0.00 0.01004 0.008 0.001 0.008 0.001 0.008 0.001 0.008 0.001 0.008 0.008 0.001 0.008 0.008 0.001 0.008 0.008 0.001 0.008 0.008 0.001 0.008
0.008 0 | 1 | PLA | IN A | ILERON | PER (I | | | | | nt d/2
USUAL | | | | | | | _ | | | | | <u> </u> | | | | | | | | | ual up- | | | | | | | · | | | | | 30° | 20° | 01' | | .058 | <u> </u> | .064 | .065 | | .055 | | .048 | .045 | .052 | .065 | | .062 | .036 | | | | 25°
25° | 20°
25°
25° | 62 | | 003
003 | | 014
.071
016 | 019
.073
023 | | 031
063 | | 025
.051
029 | 019
.049
033 | 020
.057
024 | 034
.070
029 | | 023
.065
029 | 023
.040
037 | | | | 300 | 30°
30° | 00000 | | .078 | | .080 | .076 | | .083 | | .051
031 | .052 | 080 | .075
035 | | .088
034 | 032 | 1 | | | | | | | l | ا | | | Vorag | e diffe | rentia | l No. | L , | | | | | | | | | 10°
10° | 810
810 | 02, | | .032 | | .031
007 | .035
009 | | .034
010 | | .029 | .031 | .037
010 | .052
013 | | .045
008 | .030 | | | | 20°
20°
30° | 13°
13° | 071
021 | | .058 | | .050 | .057 | Ì | 016 | | .043 | .048
015 | .051
015 | .062
019 | | .059
018 | .038 | | | | 300 | 810
810
130
130
150
150 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | .002 | | .065
010
.088 | 015 | 1 | 017 | | .050
023 | .049
018
.050 | .057
019 | .078
024
.075 | | 023 | 024 | | | | 380
380 | 15°
15° | on: | | .073 | | -:008 | .066
015 | | 016 | <u> </u> | .051
022 | 016 | .057
017 | 024 | | .068
023 | .050
026 | | | | <u> </u> | · · · · · | | | | , | | | Extra | me diff | erenti | | | | | ·
 | | | | | | 100 | 70
70 | 01' | | .031 | | 008 | 008 | | 008 | | | | .036 | .050
011 | | .044
007 | 013 | | | | 30° | 120 | On. | | .053 | | .063
008
.063 | .056
015
.063 | } | 051
016
.057 | | .043
031
.049 | .041
015
.048 | .050
016
059 | .062
019
.072 | | .059
018 | .036
018
.044 | | | | 50°
40°
40° | 140 | 65; | | .003 | | 010 | 015 | | 017 | | 083 | 017 | 019 | 023
.071 | | 022 | 024 | 1 1 | | | | 70
120
140
140
1110
70 | 0000000000 | | .007 | | 008 | 012 | | 014 | | - 019
030 | 014 | 014
.054 | 019 | | 018
.056 | 025
039 | | | | 80° | 70 | 'n | | .012 | L | .000 | 006 | L | 009 | only | 014 | 008 | 009 | 012 | | 012 | 015 | <u> </u> | | | 100 | 00 | 011 | _ | .031 | | .018 | .023 | Ţ~ | .024 | , | .019 | .022 | .027 | .044 | | .041 | .028 | <u> </u> | | | 30°
30° | 00 | 200000 | | .001 | | 003
.035 | 004 | | 004 | | 006 | 880 | 001 | 005 | | 003
.054 | 008 | | | | 30°
30°
40° | 00 | 07 | | .003 | | .043 | 007
043
005 | | 007
.042
007 | | 011
.037
011 | .035 | 006
.046
007 | .008
.062 | | 009
.060
011 | 013
.043
015 | | | | 400 | 000000 | OT: | | .062 | | .053
001 | .050 | 1 | .049 | | .043 | 007 | .045
-,004 | .063 | | 003 | .053 | | | | 50°
50°
60°
60° | 0° | 0000000
p. g. g. g. g | | .089 | | .062 | .058
003 | | 005 | | .053
008 | .045
004 | .047 | .052 | | .052
008 | .037
018 | 1 1 | | | 80° | ő | 01' | | .078 | | .070 | .066
100 | | .065
003 | | .061
007 | 003 | .054
004 | .053
006 | | .053
007 | .035
018 | | | | | | | | | | - | | | | | | | | | | | | | | TABLE II (Cont'd) FORGE TESTS. 10 BY 80 INCH GLARK Y WING WITH 80 PER GEST b/2 HANDLEY PAGE TIP SLOTS OPEN AT ALL ANGLES OF ATTACK - PLAIN ALLERONS Yaw = 0° R.M. = 609,000 Velocity = 80 m.p.h. | | | | | | | | Yaw : | | R.¥. = | | | 1201 t | | | | | | | | | |---|--|--|--|--------------|---|---------|--|---|----------
--|-------------|---|--|---|---|--|--|--|-----|---| | | | | | PLA | | | | R CENT | - | | ER CENT | , | | -, | ITH 3 I | | er c | | | | | — | | | α | _ <u>5</u> 0 | 00 | 60 PI | R OEN | / | 170 | 18° | 19º | 20° | 330 | 7 8P01 | LER UP | 310 | 380 | 400 | 500 | 8 | | | <u> </u> | 6. dn. | - | | | | | | | | -and-d | | | | | | | | | 0 | | _ | გად
10° | 100 | 6.1 | | .033 | | .049 | .056 | | .061 | | .058 | .052 | .082 | .074 | - | .067 | .038 | | _ | | | 100 | 100 | 000000
00000 | | .002 | | .003 | .000 | l | 003 | 1 | 010
068 | 002 | 009 | 015 | i | 013 | 015
.044 | ľ | l | | | 200 | 200 | 02 | | .000 | , | 004 | 009 | - | 013
085 | | 019 | 018 | 017 | 084 | | 024 | 024 | [| | | | 25° | 20°
20°
25°
25°
30°
30° | Cn. | 1 | .000 | | 008 | 013 | - | 016 | 1 | 023 | 022 | 075 | 028 | 1 | 028 | 028 | | | | | 30° | 300 | 0000 | | .075 | | .008
008 | 015 | | .084
018 | | .075
025 | .072
026 | .078
025 | | | .089
035 | .052
033 | | | | | | | | · | | | | <u>'</u> | Average | diffe | rentie | l No. | 1 | | | | | | | | | | 35° | 15° | On' | | .070 | | .074 | .079
005 | | .079
008 | | .074
016 | .070
018 | .077
018 | .094 | | .093
-,024 | .059
037 | | | | | | | _ - | | | | | | Extreme | diffe | rentia | l No. | 2 | ·—— | <u> </u> | | | | | | | | 50° | 70 | 01; | | .075 | | .078 | .077 | | .077 | | .070 | .060 | .066 | .077 | | .073
013 | .048
017 | | | | | | | 'n | Li | 1010 | | | | <u> </u> | | nlv | -,000 | 001 | 1000 | 1-1020 | ــــــــــــــــــــــــــــــــــــــ | -,010 | -,021 | | l | | _ | 60° | 000 | Oı' | | .071 | | .066 | .072 | | .072 | | .067 | .054 | .058 | .068 | | .069 | .045 | | ī | | | 600 | 00 | on' | | .017 | 27 4 77 | .018 | .007
25 PER | | .005 | 40 757 | 003 | 001 | .001 | 006 | | 007 | 015 | | | | | | | | | | PER | | o BY | ŧ | • | 40 PE | | - | | NED WIT
OTUER | . A | | | | | | 6 ₈ | δ_ ար | 8. dn. | Γ_ | | | 1.24 | | 0 51 | | | and-de | | | 350 01 | <u> </u> | | | | | | | 200 | 260 | 250 | 0,1 | | .090 | | .118 | .128 | | .116 | | .100 | .090 | .088 | .091 | | .067 | .044 | | Τ | | 900 | 250 | 250 | Oz' | | .018 | | 001 | 008 | <u> </u> | 015 | L | 022 | 033 | 022 | 031 | | 033 | 032 | | L | | | | | | | | | | | Average | | rentis | l Io. | 1 | | | | | | | | | | 250 | | | | | | | | | | | | | | |
 | | | | | 800 | 35 ⁰
35 ⁰ | 15° | on' | | .078 | | .103 | .114 | - | .108
800 | | .098
015 | .087
017 | .092 | | | .094
027 | .085
030 | | | | 800
800 | 350 | 150 | On' | | | | | .001 | Extreme | 006 | rentia | 015 | 017 | | | | .094
027 | 030 | | | | 80° | | | | | .015 | | .006 | .001 | Extreme | 006
diffe | rentia | 015
1 No. | 017
8
.074 | 018 | .078 | | .027 | 030 | | | | 80° | 50°
50° | 70 70 | On' | | .015 | - | .008 | .001 | Extreme | .006
diffe | | 015
1 No. | 017
8 | 016 | .078 | | 027 | 030 | | | | 90°
90°
80° | 50°
50° | 7° 7° | or!
on' | | .015
.087
.017 | | .006 | .001 | Sxtreme | .006
diffe
.098
.001 | | 015
1 No.
.068
007 | 017
8
.074
008 | 016
077
007 | .078 | | .027 | 030 | | | | 90°
90°
90° | 50°
50° | 7° 7° | or!
on' | | .015
.067
.017 | | .006
.087
.013 | .001
.098
.007 | Extreme | .006
diffe
.098
.001
Up-0 | | 015
1 No.
.088
007 | 017
8
008
064
003 | .077
007 | .078
013 | | .077
016 | .045
019 | | | | 90°
90°
90°
45° | 50°
50°
60°
80°
10° | 7° 7° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° | or!
on' | | .087
.017 | | .006
.087
.012 | .001
.098
.007 | Extreme | .098
.001
Up-0 | | 015
1 Ho.
.088
007
007 | 017
8
.074
008
003
.054
.000 | .077
007
007
003
.061
001 | .078
013 | | .077
015 | 030
045
019
015
029
011 | | | | 90°
90°
45°
45°
45°
45° | 50°
50°
60°
80°
10° | 7° 7° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° | or!
on' | | .067
.017
.058
.017
.050
.016 | | .008
.087
.012
.075
.014
.065
.015 | .001
.098
.007
.088
.010
.075
.011
.088 | Extreme | .006
.098
.001
.088
.004
.078
.008
.008 | | 015
.088
007
003
.070
.070 | 017
8
.074
008
.064
003
.054
.000 | .077
007
007
003
.061
001
.068
003 | .078
013
013
009
.087
009
072
009 | | .077
015
.070
011
.067
009
.073
012 | .045
019
.040
015
.029
011
.035
015 | | | | 90°
90°
45°
45°
45°
45°
45°
45° | 50°
50°
60°
80°
10° | 7° 7° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° | or!
on' | | .015
.087
.017
.058
.017
.050
.016
.057
.018 | | .008
.087
.012
.075
.014
.065
.013
.078 | .001
.098
.007
.088
.010
.075
.011 | Extreme | .006
.098
.001
.098
.001
.088
.004
.008
.008
.008
.003 | | 015
.088
007
007
003
.070
.078
003 | 017
8
.074
008
003
.054
.000
.082
003
.070
005 | .077
007
007
003
.061
001
.068
003
.074
005 | .078
013
070
009
067
006
.072
009
.080 | | .077
016
.070
011
.067
009
.073
012 | .045
019
.040
015
.029
011
.035
014
019 | | | | 80°
80°
80°
45°
45°
45°
45°
45° | 50°
50°
60°
80°
10° | 7° 7° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° | or!
on' | | .015
.067
.017
.050
.016
.057
.016
.057
.016 | | .008
.087
.013
.075
.014
.085
.015
.013
.078
.013 | .088
.007
.088
.010
.075
.011
.088
.090
.090 | Extreme | .006
diffe
.098
.001
Up-0
.088
.004
.006
.008
.004
.093
.003 | | 015
.088
007
003
.070
.000
.003
.084
004 | 017
8
.074
008
.064
003
.054
.000
003
.070
005 | .077
007
007
003
.061
001
.068
003
.074
005 | 025
078
013
009
067
009
022
009
011 | | .077
016
011
.067
003
012
.081
014 | 030
045
019
015
029
015
044
019
035 | | | | 90°
90°
90°
45°
45°
45°
45°
45°
45°
45°
45° | 50°
50°
50°
10°
10°
30°
30°
30°
30° | 7° 7° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° | or!
on' | | .067
.017
.058
.017
.050
.016
.057
.016
.057
.016
.051 | | .008
.087
.012
.075
.014
.065
.015
.076
.012
.078
.012 | .088
.007
.088
.010
.011
.088
.008
.090
.008
.091
.008 | Extreme | .006
.098
.001
.088
.004
.078
.006
.008
.008
.003
.003
.003 | | 015
.088
007
003
.070
.000
.078
004
004
083
003 | 017
8
.074
008
.064
003
.054
.000
.082
003
.070
005
.068 | .077
007
007
003
.061
001
.068
003
.074
005 | .078
013
013
009
009
009
011
009
001 | | .077
016
.070
011
.073
012
.081
014
075 | 030
045
019
015
015
015
015
016
019
017
016
058 | | | | 90°
90°
90°
45°
45°
45°
45°
45°
45°
45°
45°
45°
45 | 50°
50°
50°
10°
10°
20°
30°
30°
40° | 7° 7° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° | or!
on' | | .067
.017
.058
.017
.050
.016
.057
.016
.057
.018
.057
.018 | | .008 .087 .013 .075 .014 .065 .015 .076 .012 .078 .013 .079 .013 | .098
.007
.088
.010
.075
.011
.088
.090
.090
.090
.099
.099 | Extreme | .006 diffe .098 .001 Up088 .004 .078 .008 .088 .004 .093 .003 .003 .003 | | 015
.088
007
003
.070
.078
003
.084
004
003
003
003 | 017
8
.074
008
003
.054
003
.070
005
.068
004
.068
002 | .077
007
007
003
.061
001
.068
003
.074
005
076
076 | 025
078
013
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000 | | .077
016
.070
011
.067
009
.073
012
.081
014
.075 | 030
045
019
015
015
015
016
019
035
016
016
036
036
036
036 | | | | 80°
80°
80°
80°
80°
45°
45°
45°
45°
45°
80°
80°
80°
80° | 50°
50°
50°
10°
10°
20°
30°
30°
40° | 7° 7° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° | or!
on' | | .067
.017
.058
.017
.056
.057
.016
.057
.016
.061
.061
.057
.018 | | .008
.087
.013
.075
.014
.065
.015
.076
.012
.079
.013
.079
.014
.075 | .001
.098
.007
.008
.010
.075
.011
.088
.090
.090
.091
.009
.011 | Extreme | .006
diffe
.098
.001
Up-0
.088
.008
.008
.004
.093
.004
.093
.004
.093
.008
.008 | | 015
.088
007
003
.070
.000
.078
003
004
.083
004
.083
001 | 017
8
.074
008
003
.054
.000
.070
005
.068
004
.068
002
.068
003 | .077
007
003
001
001
005
003
004
005
003
006
003 | 025
078
003
009
009
020
011
076
009
010
010
007 | | .077
015
.070
011
.067
009
.073
.012
.014
.075
014
.089
014 | 030045019015015015015016027016023043 | | | | 90°
90°
90°
15°
15°
15°
15°
15°
15°
15°
15°
15°
15 | 50°
50°
50°
10°
20°
20°
20°
20°
40°
40°
60°
60°
10° | 880888888888888888888888888888888888888 | 011 0 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |
.067
.017
.058
.017
.016
.057
.016
.057
.018
.057
.018
.057
.019
.043
.019 | | .006 .087 .012 .075 .014 .065 .013 .078 .012 .079 .013 .077 .014 .055 .010 .010 .010 .010 .010 .010 | .001
.088
.007
.010
.075
.011
.088
.090
.008
.091
.009
.011
.084
.011 | Sxtreme | .006 diffe098001 Up-< .088004078008004093003003003008006092006006006006006006 | | 015 .088 .007 .077003 .070 .070 .004 .083003 .001 .001 .001 | 017
8
.074
008
003
.054
.000
.070
.070
.070
.005
.068
004
.008
003
.070
.068
003
.070
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.05 | 016007007007008001001008006006006008008008 | 025078013009009007009001011076009010011007 | | .077
016
.070
011
.067
003
012
.014
015
014
014
010
.069 | .045
019
015
015
015
015
015
015
015
025
025
025
026
023
023
016
027 | | | | 90°
90°
90°
15°
15°
15°
15°
15°
15°
15°
15°
15°
15 | 50°
50°
50°
10°
10°
20°
30°
30°
30°
40°
40°
60°
60°
10°
20° | 7°° | מססססססססססססססססססססססססססססססססססססס | | .087
.017
.058
.017
.056
.057
.016
.057
.016
.051
.051
.055
.018 | | .006 .087 .012 .075 .014 .065 .013 .076 .013 .079 .013 .077 .014 .055 .000 .013 | .001
.098
.007
.010
.075
.011
.088
.090
.091
.099
.091
.011
.069
.011 | Sxtreme | 006 diff* .098 .001 Up088 .004 .078 .008 .008 .0093 .003 .003 .008 .008 .008 .008 .008 .00 | | 015 .088007003 .070 .000 .078003 .084003003003003003 | 017
8
.074
008
.064
003
.052
.000
.068
004
.068
004
.068
003
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.00 | 016
007
007
003
.061
001
.074
005
.070
004
003
.087
008 | 025078013009009007009001011076009010011007 | | .077
016
.070
011
.069
012
.081
014
.072
012
.084
.073
012
.084
.073
083
083 | 030045019015015015015016023016023016033 | | | | 90°
90°
90°
15°
15°
15°
15°
15°
15°
15°
15°
15°
15 | 50°
50°
50°
10°
20°
30°
30°
30°
40°
40°
60°
10°
20°
20°
20°
20°
20°
20°
20°
20°
20°
2 | 7°° | מססססססססססססססססססססססססססססססססססססס | | .015
.067
.017
.050
.016
.057
.016
.057
.018
.057
.018
.059
.018
.019
.043
.019 | | .006 .087 .013 .075 .014 .065 .013 .078 .013 .079 .013 .079 .015 .060 .012 .070 .010 .050 | .001 .098 .007 .088 .010 .075 .011 .088 .090 .008 .091 .009 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 | Sxtreme | 006 diffs .098 .001 Up088 .004 .078 .008 .088 .004 .093 .003 .003 .003 .003 .003 .003 .006 .006 | | 015 .088007003 .070003 .078003 .084003 .083001 .085001 .072004 |
017
8
.074
008
003
.050
.000
.082
003
.070
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
008
0 | 016007007003001001003074005003004005006006 | 025078013070009009080011078009080011007062007068010 | | .077
016
.070
011
.073
012
.075
012
.073
014
.073
014
.073
014
.073
014
.073
014
.073 | 030045019015015015015016037016023018019019 | | | | 90°
90°
90°
15°
15°
15°
15°
15°
15°
15°
15°
15°
15 | 50°
50°
50°
10°
10°
20°
30°
30°
30°
40°
40°
60°
60°
10°
20° | 7°° | 011 0 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | .088
.017
.050
.017
.050
.016
.057
.016
.057
.018
.057
.018
.058
.019
.043
.015
.044
.043
.043
.040 | | .006 .087 .012 .075 .014 .065 .013 .078 .012 .079 .013 .079 .014 .075 .080 .012 .070 .010 .000 | .001 .088 .007 .088 .010 .075 .011 .088 .090 .008 .091 .009 .011 .084 .011 .069 .011 .084 .011 | - | .006 diffe .098 .001 Up088 .004 .078 .008 .008 .004 .093 .004 .093 .006 .098 .006 .008 .008 .008 .008 .008 | only | 015 .088007003 .070003 .070 .000 .078003 .084003 .083001 .001 .001 .005001 .005001 | 017
8
.074
008
003
.054
.000
.082
003
003
005
003
003
003
003
003
003
003
003
004 | 0160170070030610010080030740050030640064005003 | 025078013009009080011076009080011077062009068009 | | .077
016
.070
011
.067
009
.075
012
.089
014
.075
012
.089
013
019
.009 | .045
019
.040
015
.029
011
.049
037
037
056
028
028
011
.036 | | | | 90°
90°
90°
15°
15°
15°
15°
15°
15°
15°
15°
15°
15 | 50°
50°
50°
10°
20°
30°
30°
30°
40°
40°
60°
10°
20°
20°
20°
20°
20°
20°
20°
20°
20°
2 | 7°° | מססססססססססססססססססססססססססססססססססססס | | .088
.017
.050
.017
.050
.016
.057
.016
.057
.018
.057
.018
.058
.019
.043
.015
.044
.043
.043
.040 | er all | .006 .087 .012 .075 .014 .065 .013 .078 .012 .079 .013 .079 .014 .075 .080 .012 .070 .010 .000 | .001 .098 .007 .088 .010 .075 .011 .088 .090 .008 .091 .009 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 .011 .089 | - | .006 .098 .001 .098 .001 .088 .004 .098 .004 .093 .004 .093 .006 .086 .098 .006 .086 .086 .088 .006 .086 .088 .006 .088 .006 .088 .006 .088 .006 .088 .008 .088 .008 .088 .008 .088 .008 .088 .008 .088 . | only PER (| 015 .088007003 .070003 .070 .000 .078003 .084003 .083001 .001 .001 .005001 .005001 | 017
8
.074
008
003
.054
.000
.082
003
003
005
003
003
003
003
003
003
003
003
004 | 0160170070030610010080030740050030640064005003 | 025078013009009080011076009080011077062009068009 | b/2 | .077
016
.070
011
.073
012
.075
012
.073
014
.073
014
.073
014
.073
014
.073
014
.073 | 030045019015015015015016037016023018019019 | | | | 80°
80°
80°
80°
80°
80°
80°
80° | 50°
50°
50°
10°
20°
20°
20°
40°
60°
60°
60°
10°
10° | 7°° | รือสี รายาร์สาร์สาร์สาร์สาร์สาร์สาร์สาร์สาร์สาร์ส | | .0667
.017
.056
.017
.050
.016
.057
.016
.057
.018
.057
.018
.059
.019
.019
.019
.019
.019
.019
.019
.01 | ER AL | .006 .087 .013 .075 .014 .065 .015 .078 .012 .079 .014 .075 .015 .010 .010 .010 .009 | .001 .088 .007 .088 .010 .075 .011 .088 .008 .091 .089 .011 .089 .011 .089 .011 .079 .089 .017 .089 .089 .089 .089 .089 .089 .089 .089 | - | .006 .098 .001 .098 .001 .088 .004 .098 .004 .093 .003 .098 .008 .008 .008 .008 .008 .008 .008 | only PER (| 015 .088007003 .070 .000 .000 .084003 .083001 .077001 .057004 | 017
8
.074
008
003
.054
.000
.000
.070
003
.070
003
.068
003
.050
003
.050
003
.050
003 | 016077007003061001006003074005003006003006003006003 | 025078013070009009009009001009001007006010007068010054007 | D/3 | .077
016
.070
011
.067
009
.073
012
.089
014
.075
012
.089
013
010
.089
013
010
.089
013
010 | 030045019015021015015016027016023043016023016023016023016 | | | | 90°
90°
90°
45°
45°
45°
45°
45°
45°
80°
80°
80°
80°
80°
80°
80°
80° | 50° 50° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1 | 7°° 7°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° | รื่อย เรียกรับ เรียกร | | .086
.017
.017
.050
.016
.057
.016
.057
.018
.059
.019
.043
.010
.040
.043
.040
.040
.040
.040
.040
.04 | ER AL | .006 .087 .013 .075 .014 .085 .015 .078 .012 .078 .013 .077 .014 .075 .080 .013 .070 .010 .000 | .001 .098 .007 .086 .010 .075 .011 .088 .090 .091 .099 .011 .089 .011 .089 .011 .079 .008 .007 FORWARI | - | 006 diffe .098 .001 Up088 .004 .078 .006 .088 .004 .093 .003 .008 .008 .008 .008 .008 .008 .00 | only PER (| 015 .088007003 .070 .000 .078003 .084004 .083003001 .077001 .007001 | 017 8 .074008 .064003 .054 .000 .082003 .070005 .088008 .008008 .009 .009 .009 .009 .009 .009 .009 | 016007007003001001003003003004005003004005003005003 | 025078013070009009020021072009085010071062007068010054007 | D/8 | 027016011009012012013014013014019014019019019019019019019019019019019019019019 | 030045019015015015015016023016023016023016023016023016023016023016023016023024016 | | | | 80°
80°
80°
80°
80°
80°
80°
80° | 50°
50°
50°
10°
20°
20°
20°
20°
40°
60°
10°
10°
10° | 7°° 7°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° | รื่อย เรียกรับ เรียกร | |
.0667
.017
.0686
.017
.050
.016
.057
.018
.057
.018
.057
.018
.055
.019
.043
.010
.057
.018
.059
.014
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.059
.059
.059
.059
.059
.059
.05 | ER AL | .006 .087 .013 .075 .014 .085 .013 .078 .013 .079 .014 .075 .015 .060 .012 .070 .011 .009 | .001 .098 .007 .088 .010 .075 .011 .088 .008 .090 .091 .008 .091 .008 .011 .089 .011 .089 .011 .089 .011 .089 .008 .007 | - | 006 diffe .098 .001 Up088 .004 .098 .004 .093 .004 .093 .005 .098 .006 .098 .006 .098 .006 .098 .006 .098 .006 .006 .006 .006 .007 .005 .008 .005 .005 .005 .005 .005 .005 | only PER (| 01.5 .088007003 .070003 .084004 .083001 .072001 .072004 .084004 | 017 8 .074008 .064003 .054 .000 .023 .070003 .070003 .068002 .068003 .059003 .059004 .045004 | 016017007003061001003074005076003064005003004005003 | 025078013070009060013076007010011068010054007068 | b/2 | 027016070011061009012081014075013014075014075014075010089014009018009 | 030045019040015025015015044016023016034016032010 | | | | 80° 80° 80° 80° 80° 80° 80° 80° 80° 80° | 50° 50° 10° 10° 20° 20° 20° 20° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1 | 7°° 7°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° | รื่อย เรียกรับ เรียกร | | .0667
.017
.0868
.017
.050
.016
.057
.016
.057
.018
.057
.018
.058
.019
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.019
.059
.059
.059
.059
.059
.059
.059
.05 | ER AL | .006 .087 .013 .075 .014 .065 .015 .078 .012 .079 .013 .077 .014 .075 .015 .000 .010 .000 .000 .000 .000 | .001 .098 .007 .088 .007 .011 .088 .008 .091 .008 .091 .009 .011 .084 .011 .069 .008 .069 .011 .075 .084 .011 .079 .084 .011 .089 .084 .011 .089 .089 .089 .089 .089 .089 .089 .089 | - | 006 diffe .098 .001 Up088 .004 .098 .004 .093 .004 .093 .004 .093 .005 .086 .008 .008 .008 .008 .008 .008 .008 | only PER (| 01.5 .088007003 .070003 .084003 .083001 .0770015001 .057004 .057004 .057004 | 017 8074008003 .054003 .070005003002 .050004004004004004004004004004 | 018007007003001001003004005003003003003003003003003 | 025078070009009020021076009080011076009080010071062007083010054007081007081007083 | b/8 | .027 .077 .016 .070 .011 .061 .012 .012 .014 .075 .013 .014 .075 .019 .014 .075 .019 .010 .051 .054 .009 | 030045019040015029011037015056023016023010022010 | | | | 90°
90°
90°
45°
45°
45°
45°
45°
45°
45°
45°
45°
45 | 50° 50° 50° 10° 20° 20° 20° 20° 20° 20° 20° 20° 20° 2 | 7°° 7°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° 8°° | รื่อย เรียกรับ เรียกร | | .015
.087
.017
.050
.016
.057
.016
.057
.018
.058
.019
.043
.010
.043
.010
.030
.040
.010
.030
.030
.030
.030
.030
.030
.03 | ER AL | .006 .087 .013 .075 .014 .065 .015 .076 .013 .079 .013 .077 .014 .075 .015 .006 .010 .0010 | .001 .098 .007 .086 .010 .075 .011 .088 .090 .091 .099 .011 .089 .011 .079 .008 .007 FORWARI | - | 006 diffe .098 .001 Up088 .004 .098 .004 .093 .004 .093 .005 .086 .006 .086 .005 .086 .005 .005 .005 .005 .005 .005 .005 .00 | only PER (| 015 .088007003 .070 .000 .078003 .084004 .083001 .077001 .077004 .083004 .083004 | 017 8 .074008 .064003 .054003 .070005 .068004068004004 .069 .001 .000 | 016007007007003001001004003003002004005003003003003003003003003 | 025078013070009087009011072009011077062010071063010071063007068010071063007068010007068010007068010007068010007008 | b/2 | 027016070015070017009012012014012013013013013010024009001024008008 | 030045019015015015015015016027016023018018019019019019019019019019019019019019 | | | | 900
900
900
900
900
450
450
450
450
450
450
450
450
450
4 | 50°
50°
50°
10°
20°
20°
20°
20°
20°
20°
20°
10°
10°
10°
10°
10°
10° | 7°° | מססססססססססססססססססססססססססססססססססססס | | .0687
.017
.0586
.017
.050
.050
.050
.016
.057
.018
.057
.018
.058
.019
.043
.010
.044
.033
.010
.059
.010
.040
.050
.010
.040
.050
.010
.040
.050
.010
.050
.050
.050
.050
.050
.05 | ær al | .006 .087 .012 .075 .014 .065 .013 .078 .013 .079 .013 .079 .014 .075 .080 .015 .090 .000 .000 .000 .000 .000 | .001 .088 .007 .088 .010 .075 .011 .088 .090 .088 .091 .009 .011 .084 .011 .089 .011 .089 .017 .089 .017 .089 .017 .089 .007 | - | .006 diffs .098 .001 Up088 .004 .078 .008 .008 .009 .009 .008 .009 .008 .008 | only PER (| 01.5 .088007003 .079003 .084003 .083001 .072001 .057001 .057004 | 017 8 .074008 .064003 .054003 .070005003003003003003003003003003003003003004004004004 | 016017007003061001003074005003003004005003003003003003 | 025078013070009069067006072007085010054067068070054070088007088007088007088007088007088007088007088007088008 | b/2 | 027016077016070011069012081014075010089014075010089014009 | 030045019015015015015015044019023023016023016023010008002010 | | | # TABLE III. FORCE TESTS. 10 BT 80 INCH CLARK Y WING WITH 50 PER CENT b/2 HAWDLEY PAGE TIP SLOTS OPEN AT ALL ANGLES OF ATTACK — PLAIN ALLERONS AND SPOILERS | | | | | | | ¥ | | | | | Velocit | | | | | | | | | | |--------------------|-------------------|----------------|-------------|-----------------|---------------|-------------|---------------|--|-----------------------|--|------------------|-------------|-------------|-------------------|--------------|-------------|-------------|--------------|-------------|----------| | | | | 0 | -0 | | | | | | | BY 40 | | | | | 0 | | 0 | 0 | | | | | α | -10° | -8° | 00 | 80 | 100 | 150 | 180 | 190 | 20° | 330 | 25° | 30° | 32° | 33° | 34° | 40° | 50° | 60° | | δ _A up | 5, dn. | | | | | | = | | | | | | | | | | | | | | | 800 | 00 | 0, | -0.297 | -0.046 | 0.268 | 0.592 | 0.898 | 1 | 1.178 | 1.206 | 1.155 | 1.125 | 1.082 | 1.140 | 1.142 | 1.145 | 1.132 | 1.074 | | 0.725 | | 1 00 | 8 | 0.585.0 | .103 | .058 | .039 | 050 | 007 | 1 | 042 | 050 | 061 | 063 | 068 | 073 | 073 | .682
074 | .573
073 | .711
063 | .898 | 1.068 | | 00 | 00 | O _n | .005 | .002 | .003 | .002 | .004 | | .009 | | | .018 | .026 | .035 | .040 | .042 | -045 | .047 | .048 | .052 | | 250 | 250 | 0-1 | | | .070 | | .067 | 0.070 | | -and-do | .061 | .055 | .053 | .048 | .043 | | | .008 | | - | | 250 | 25° | 82' | | | 004 | <u> </u> | 016 | 022 | 024 | | 027 | 027 | 033 | 034 | 035 | | | 026 | <u> </u> | | | | | | • | _ | | | | | | | l No. | - | | | 450 | r | | | г | | | 35°
35° | 15° | 61, | | | .074 | | 008 | .070
014 | | | .070 | .064
023 | .085 | .085
035 | .059
038 | | | 038 | | | | | | | | | | | E | I FIGH | diff | erenti | al No. | 2 | | | | | | | | | | 50° | 70 | 62, | ; | | .073 | | .076 | | .082 | | 014 | .072
034 | .073 | .075 | .072
034 | | | 039 | | 1 1 | | | | | | | | <u> </u> | <u> </u> | | | -only | | | | | | · | | | ٠ | | | 60° | 98 | 00 | | | .071 | | .075 | | .082 | | .063 | .074
019 | .075
018 | .078
085 | .075
029 | | | .044
8\$C | | | | | | 'n | | LAIN A | L | 3 25 P | Ь— | | | | | | | | | <u> </u> | | 10.00 | | - | | 5. WD | 6. dn. | ГП | <u>-</u> - | | | | | | | | l rigge | | | | | | | | | | | _5 ¥ mp | 1 A ₀₀ | Q _L | 410
.123 | 149 | .163 | ΓΞ | .820 | 1.044 | 1.101 | 1.130 | 1.084 | 1.000 | 1.010 | 1.065 | 1.090 | 1.093 | 1.090 | 1.050 | | | | 800 | 000 | 9995 | .015 | .068
800. | 001 | } | 003 | -:012 | .168
037 | .189
044 | 053 | .314
057 | .358
060 | 452
086 | .491
067 | 068 | 070 | .672
086 | | | | 0° | 00 | 0,1 | .006 | .003 | .001 | | .003 | .008
-and-d | .007 | .007 | .005 | .017 | .025 | .030 | .035 | .037 | .038 | .047 | L | Щ | | 25° | 25° | 0,1 | 7- | | .074 | | .070 | .070 | .072 | | .070 | .084 | ,065 | .065 | .059 | | |
.021 | | Г | | 250 | 25° | 07, | | | .004 | <u>L.</u> | 009 | 014 | -,018 | L | 022 | 023 | 029 | 035 | 038 | | | 028 | | | | | T | | | | | Lxtrem | | erenti | | | FIOR I | | | 070 | 000 | | | 045 | | | | 50°
50° | 70 | Oz' | | | .063 | | .068 | .001 | .075 | | .072
006 | .065
018 | .067
013 | .070
019 | .068
.023 | | | .047
027 | | | | | | | | RONS 20 | PER C | ERT | o PT | 40 PER | CENT | ъ/2 | OCMBI | ED VI | н наш | LEY P | OE 3 I | ER OE: | T o | | | | | 4 6 11 | . E . | _ | BY | 50 PER (| JERT 1 | 5/2 I | TERCE | | | | | ON MI | IG. 13 | TEF CEI | PTOR U | 80° | | | | | | 68 A 4 | + | 1 | | | · · · · | | | , | | -and-do | | | | | | | | | | | | 90° 25° | 25° | 07' | | | 003 | .069
016 | | | 080 | | 020 | .055
023 | .053
024 | .050
033 | .045
023 | | } | 030 | | | | | | n- | | | | | ĀY | erage | diffe | rential | I No. 1 | | - | | · | <u>`</u> - | | | | | | 80° 35° | 15°0 | 02' | | | .074 | 008 | | | .071 | | .074
015 | .060
017 | 081 | .065 | .068 | | | .043 | | | | | | | ٠ | | | <u> </u> | Ex | | 1 — | | I No. 2 | | | | <u> </u> | | | | <u> </u> | · | | 900 500 | 70
70 | 62, | | | .074 | .076 | | .079 | .060 | | .083 | .068 | .070 | .075 | .072 | | | .055 | | | | 800 800 | 70 | Ġν, | | | :012 | .000 | | 005 | 006
Tra-0 | <u>. </u> | 004 | 015 | 016 | 080 | 081 | <u> </u> | L | 081 | L | | | 900 600 | 00 | 0,1 | | | .070 | .078 | | .080 | .083 | | .083 | .066 | .071 | .069 | .071 | 1 | Γ | .054 | | | | 800 800 | ŏo | 0,1,1 | | | .016 | .004 | <u> </u> | .000 | .000 | | .003 | | 010 | 015 | | | <u> </u> | 017 | L | | |] | | | z per | PLAII
CENT C | AILER
BY 8 | ROTE 2: | 5 PER
CENT | | | | R CENT
ATED B | | | | | 90° | | | | | | | | | | | | | | | | nd-dow | | | | | | <u> </u> | | | | | | 90° 25° | 25° | 07. | | | .071
001 | | .070 | .076 | .087 | | .076 | .072
023 | | .062 | | | | .047 | | | | 50 120- | <u></u> | L'n l | | PLAIN | AILERO | NS 25 | PER OF | NT c | BY 4 | O PER | CENT | p/3 0 | OFBIRE | D WITH | | J | <u> </u> | | | Ь | | | | _ | | 7 P | er cen | <u> </u> | BY 50 | - E-11 | | | ARWARD | -HINGE | BPOI | LER | | | | | | | | 900 250 | 85° | 01, | | | .078 | Γ | .085 | 00 | .123 | | -119 | .106
034 | .101 | .083 | 076
023 | | | 055 | 1 | | | 909 250 | 250 | L'n'. | | | .011 | <u> </u> | | 100 | 7,000 | l | 1 No. : | <u> </u> | | | | <u> </u> | <u> </u> | | | | | 90° 35°
90° 35° | 15°
15° | 01;
0n; | | | .072 | | .081 | .094 | .112 | | .113 | .100
017 | .105 | .091 | .084 | | | 034 | | | | 800 380 | 120 | Ľ'n' | | | .010 | <u> </u> | | | | | 1 No. : | | 1.000 | | | | <u> </u> | | | | | 90° 50° | 70 | 0,1 | | | .073 | Γ | .078 | .091 | .110 | | .111 | .098 | .094 | .087 | | | | .060 | | | | 80° 20°
80° 20° | 70 | or'
on' | | | .024 | L | .018 | .011 | .008 | | 001 | 011 | 015 | - .013 | 017 | Ь | <u> </u> | 039 | Ь— | <u> </u> | | 0001000 | 00 | 0-1 | | | .068 | | .073 | .081 | .103 | | .106 | ,083 | .092 | .061 | .062 | | T | .056 | | T | | 90° 60° | 80 | 0,'
0n' | | | .028 | <u> </u> | .020 | .016 | .010 | <u> </u> | .004 | 005 | 011 | 008 | 013 | <u> </u> | L | 023 | <u> </u> | L | | | | | | SPOIL | ER ALO | ee (fo | RWARD- | HINGE | | | NT o | BY 60 | PER O | ENT b | /2 | | | | | | | 800 00 | 00 | 0.1 | | | .028 | Γ | .050 | .073 | <u>Up-o</u>
L .097 | | .104 | .088 | .081 | .077 | .075 | Π_ | Τ | .079 | | | | 800 00 | % | Gı'. | | | .025 | | .02 | .020 | .097 | _ | .014 | .005 | 001 | .001 | 004 | | <u></u> | 013 | #### TABLE IV # ROTATION TESTS. 10 BY-60 INCH CLARK Y WING WITH 50 PER CENT b/2 HANDLEY PAGE TIP SLOTS G_{λ} is given for forced rotation at $p^{1}b/2V = 0.05$ (+) Aiding the rotation - (-) Damping the rotation ptb/2V values are for free rotation Yaw = 0° Velocity = 80 m.p.h. R.W. = 809,000 | | α | 00 | 130 | 78 ₀ | 180 | 780 | 800 | sr.º | 220 | 250 | 260 | 30° | 390 | 330 | 340 | 35° | 360 | 400 | |------------------------------|------------|------|------|-----------------|------|-------|---------|----------|----------|---------|--------|------|-------|------|-------|-------|-------|-------| | | | | | | | | Ailero | na lock | ed - Xer | tral at | : 0° | | | | | | | | | (+)
Rotation | مرم | 0245 | 0218 | 0083 | 0058 | 0018 | 0013 | 0118 | 0168 | | 0173 | 0073 | .0007 | | | .0030 | | .0084 | | (olock- | 2 P | | | | | | | | | | | | .056 | .147 | | .359 | | .479 | | (-)
Rotation | I ⁻A | 0243 | 0207 | 0098 | 0085 | 0005 | .0006 | 0105 | 0158 | | 0148 | 0088 | .0042 | | | .0070 | _ | .009 | | counter- | 2 1 | | | | | | | | | | | | .078 | .548 | | .595 | | .490 | | | | | | | | Aile | rons lo | oked - 1 | Seutral | rigged | up 10° | | | | | | | | | (+) | ٥٨ | 0348 | 0233 | 0062 | 0074 | 0018 | ~.0006 | 0058 | ~.0174 | 0182 | | 0082 | .0012 | | .0048 | | .0018 | .007 | | Rotation
(clock-
wise) | <u>p¹b</u> | | | | | | | | | | | | | .080 | | .190 | | .406 | | -)
lotation | اد ا | 0215 | 0200 | 0100 | 0114 | .0018 | .0016 | 0058 | 0140 | 0150 | | 0062 | .0042 | | .0062 | | .0034 | .007 | | counter-
lock-
rise) | <u>p'b</u> | | | | | | | | | | | | .054 | .141 | | . 338 | | .406 | #### TABLE Y # ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH 50 PER CENT b/2 HANDLEY PAGE TIP SLOTS C_{λ} is given for forced rotation at $p^{1}b/37 = 0.05$ (+) Aiding the rotation (-) Damping the rotation Yaw = -30° Yelogity = 80 m.p.h. R.M. = 809,000 | | α | 00 | 130 | 140 | 160 | 18° | .20° | 33° | 23° | 250 | 38° | 50° | 35° | 400 | 450 | |--|----------------|---------|---------|---------|---------|----------|----------|-----------|----------|---------|---------|---------|---------|---------|---------| | | | | | | | Alle | rons loc | oked - Ye | utral at | . 0° | | | | | | | (+)
Rota-
tion
(Clock
wise) | | -0.0300 | -0.0355 | -0.0480 | -0.0550 | -0.0460 | -0.0465 | -0.0510 | -0.0648 | -0.0735 | -0.0770 | -0.0775 | -0.0685 | -0.0535 | -0.0540 | | (-) Rota- tion (Coun- ter- clock- wise) | مرم | 0190 | 0050 | .0000 | .0100 | .0360 | .0435 | .0385 | .0300 | .0440 | .0505 | .0555 | .6370 | .0780 | .0840 | | | | | | | 44 | lerons 1 | locked - | Meutral | rigged u | p 10° | | | | | | | (+)
Rota-
tion
(Clock-
wise) | | 0284 | 0330 | ~.0358 | 0450 | 0593 | 0434 | 0478 | 0588 | 0688 | | 0728 | 0858 | 0534 | | | (-) Hota- tion (Coun- ter- clock- wise) | σ _λ | 0146 | 0056 | 0030 | .0044 | .0300 | .0400 | .0238 | .0370 | .0430 | | .0520 | .0844 | .0758 | | TABLE VI # FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH HANDLEY PAGE FULL-SPAN SLOT OPEN AT ALL ANGLES OF ATTACK -- PLAIN AILERONS AND SPOILERS $T_{aw} = 0^{\circ}$ R.N. = 609,000 Velocity = 80 m.p.h. | | <u> </u> | | | | Taw : | = 00 | R.I. | = 609,0 | 000 | 701001 | ty = 1 | 30 m.p | .h. | | | | | |--|--|---|----------------|---|-------|---------------|--|---------|--|---|---------------|---|---|--|---|---------------|------| | | PLAIN AILERONS 25 PER CENT o BY 40 PER CENT b/2 0 | α | -5° | 00 | 5° | 6° | 100 | 150 | 20° | 240 | 250 | 260 | 30° | 35 ⁰ | 40° | 50° | 60° | | 6_ պ ր | δ _k dn. | | | | | | Ailer | ons 100 | cked - | Youtr | al | | | | | | | | 00 | 00 | or
od | -0.017
.086 | 0.293
.050 | 0.636 | 0.700
.061 | 0.932 | 1.338 | 1.888
.236 | _ | 1.818
.340 | 1.830
.360 | 1.455
.475 | 1.258
.623 | 1.148
.753 | 0.966
.899 | 0.79 | | | | | | | | | E | qual u | p -and- - | lown | | | | | | | | | 200
200
250
250
300
300 | 20°
25°
25°
30°
30° | 000000
00000 | | .065
004
.077
004 | - | | .063
015
.067
017
.076
019 | | .061
027
.072
033
.084
035 | 0.056
039
.068
035
.078
039 | | .019
031
.027
036
.035
041 | .015
029
.034
035
.031
040 | .015
025
018
029
033 | .006
020
.008
025
.011
028 | | | | | | | | | | | Average | diff | erenti | ıl No. | 1 | | | | | | | | 10°
10°
20°
20°
30°
35°
35° | 810
8130
130
150
150
150 | 0 n n n n n n n n n | | .037
002
.047
001
.064
.001 | • | | .038
007
.050
011
.061
011
.066
010 | | .028
014
.052
021
.070
024
.073
023 | .023
014
.044
023
.068
028
028 | | 003
017
.015
035
031
031 | .000
014
.015
023
.030
031
.035
031 | .003
018
014
020
023
029
027 | .000
009
.005
015
.014
021
.019 | | | | | | l | | | | 1 | Extrem | diff | erenti | l No. | 3 | - | | | | L | | | 10°
10°
20°
20°
30°
30°
40°
40°
50° | 70
70
120
140
140
110
110
70 | C 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | .026
003
.048
001
.064
.001
.072
.006
.077 | | | .027
007
.050
011
.060
011
.066
007
.069
003 | | .026
012
.053
022
.070
035
.073
020
.075 | .033
014
.045
024
.065
029
.070
035 | |
005
016
.014
026
.033
032
.040
029
.045
024 | 001
013
.014
024
.030
032
.035
028
.038
025 | .003
012
.014
031
.034
036
.030
035
.026
019 | .001
009
.006
016
.014
022
.024
024
.013
015 | | | | | | | | | | | | Up~∢ | only | | | | , | | | | | | 10°
10°
20°
20°
30°
30°
40°
40°
50°
60° | 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | ŕ | .016
001
.033
.001
.048
.004
.057
.008
.018
.072
.016 | | | .017
004
.033
005
.040
004
.049
008
.058
.001 | | .018
008
.036
013
.051
014
.057
012
.065
011
009 | .016
009
.033
015
.053
019
.059
016
.065
015 | | 010
011
.005
017
.034
031
.033
030
.038
019
.046
018 | 005
009
.007
015
.021
021
.028
021
.034
019
.040
019 | .002
007
.010
013
.020
017
.027
018
.023
014
.023
013 | .000
005
.005
010
.013
014
.023
018
.011
011 | | | | | | | | | | | | Down- | nly | | | | | | | | | | රිගිරිගිත් ප්රමුති
රිගිරිගිත් ප්රමුති | 00
100
100
200
300
300 | 20000000 | | .005
.000
.011
003
.018
006
.036 | | | .007
002
.014
005
.027
011
.037
017 | | .006
002
.014
008
.024
015
.031 | .004
002
.012
008
.022
016
.027
024 | | .002
001
009
010
005
016
008 | .005
008
005
006
.012
015
.0100
021 | .006
003
004
006
003
011
006
016 | .000
003
004
005
008
008
012 | | | TABLE VI. (Cont'd) PLAIN AILERONS 25 PER ORNT c BY 40 PER ORNT b/2 | | | | | _ | |----------|-----|--------|----|-------| | ALC: LAB | AT. | PIGGED | ΠĐ | ם חוד | | | | | T | | | - 1 | .т | | TRAL R | | , | | | | | | | |--|--|---|---|-------------|--|--------------|--|--------------------------------------|---|---|------------------------------|--|--|--|--|--------------|------| | | 8 | . A. | α | -50 | 00 | 50 60 | | | | ــــــــــــــــــــــــــــــــــــــ | 25° | 360 | | 350 | 400 | 50° | 60 | | | - | δ _A dn. | | | | | | | ed - N | | | ΤŤ | | <u> </u> | | T | | | | % | 80 | 않 | 115
.094 | | .537
.046 | .850 | | 1.582 | 1.735 | | | 1.413
.435 | | 1.112 | .947
.837 | .793 | | | | | | | | 1 | [qual v | m-and | -down | (From | rigge | d up | 10º) | | | | | | | 20° | 30° | O1! | | 002 | | .053
800 | | .064 | .080 | | | .027 | .023 | .014 | | | | | 2B0 | 250 | 01:
01:
01: | ; | 880 | | .066 | | .073 | 026
.073 | 1 | .038 | - 039
- 035 | 034 | 020 | | | | | 25° | 35° | 00. | : | 003 | | 010
.078 | | 023 | | | -031 | .031 | 027 | 024
.024 | 1 | | | | 30° | 300 | o _n , | <u> </u> | 003 | | 013 | | 026 | 031 | l | -,033 | -033 | 029 | 028 | <u> </u> | | | | r | | | r | | Extreme | diff | renti | al No. | 3 (Fr | om ri | gged | up 10° | P) | | | | | | 100 | 70 | 00000000 | : | 001 | | .027 | | .030 | .027 | | .000
014 | .003 | .008 | 004 | | | | | 1200 | 120 | 07 | - | 051 | | .043 | | .054 | .053 | il | .025 | .022 | .002 | ,001 | | | | | 30° | 1 140 | 07 | : | 004 | | 005
.055 | i ' | 016 | 020 | | .035 | -032
.031 | 018 | 015 | | | | | 30° | 140 | On. | • | 007 | | 004
.061 | | 015 | 019
.067 | | 024 | - 023 | 020 | 020 | [| | | | 400 | 1120 | On! | [: | 011 | | .001 | | 013 | 017 | 1 1 | 020 | .035 | 016 | .011
012 | | | | | 50° | 70 | ร์ ส์กัส | : | 066 | | .060 | | 007 | .068
011 | | .043
-015 | .037
-016 | 010 | .008
009 | | | | | | ·! | | PLAIN | AILEF | RONS 28 | PER C | ENT (| BY 4 | O PER | CENT | ъ/з | | ــــــــــا | | l | | | | | , - | | RE | AR-HI | INGED 8 | POILE | 1 7 PEF | ROENT | c B | ¥ 40 | PER O | CHT 1 | /2 | | | | | δ _B | | δ _A dn. | | · . | | | | Equal | up-and | l-down | , , | | • | | | | | | 80c
80c | 25° | 25° | O ₂ ! | : | 031 | | .109
004 | | .141 | .145
025 | | .141 | .081
-029 | .044 | .030 | | | | | <u> </u> | | | | | | Avera | ıge dii | feren | ial No | 0. 1 | | | | | | | | 80° | 350 | 150 | 0,'
0,' | | 085 | _ | .097 | | .133 | .143 | $ \ $ | .139 | | .052 | .039 | | | | 800 | 35° | 150 | 0", | <u></u> | 015 | | .003 | | 012 | Ь | ليا | -033 | 029 | 038 | 028 | | | | 0 | 50° | 70 | - 1 | | 000 | | | me dii | ferent | | 0. <u>2</u> | | | | | _ | | | 80° | 500 | 70 | Or! | | 031
088 | | .090 | | .123
004 | .130
010 | | .127
-014 | .093 | .048 | .034
080 | | | | | | | | | | | | Ur | only | | | | | | | | | | 150 | 10° | o° | 02! | | 027 |] | .050 | | .086 | .093 |]] | .091 | .059 | .030 | .020 | | | | 300 I | 1100 1 | 00 | an, | | 008
044 | İ | .005 | | .000 | 004
.098 | | 006 | | 013 | 012 | | | | 20° | 110° I | 00 | on! | 1.1 | 010 | 1 | .006 | | .001 | 004 | | -,006 | -,010 | 013 | 012 | | | | 30°
30°
45° | 300
300 | ~0 (| 01 | | 051
010 | J | .066 | | | | | | | .037 | | | | | 720 | 100 | Y . 1 | | | | | | 1 | - 003 | .108 | 1 1 | .106 | | | .025 | - | | | 45 | TO. | 000 | 07! | 1.0 | 054 | | .005 | | 003
.094 | 007 | 1 1 | 009
.103 | -013
.088 | 016
.035 | 017
.022 | - | | | 450
450 | 100 | 00 | 07. | | 054
012 | | .005
.062 | | 003
.094
.001 | 007
.104
003 | | 009
.103
005 | -013
.068
-009 | 016
.035
013 | 017
.022
012 | - | | | 450
450
450 | 200
200 | 888 | 07
07
07 | | 054
012
058
013 | į | .005
.062
.008
.070 | | 003
.094
.001
.104
.003 | 007
.104
003
.112
006 | | 009
.103
005 | -013
.068
-009 | 016
.035
013
.040
016 | 017
.022
012
.027
016 | | | | 450
450
450 | 20°
20° | 888 | 000000
000000 | | 054
012
058
013
064 | : | .005
.062
.008
.070
.007 | | 003
.094
.001
.104
.008
.111 | 007
.104
003
.112
006 | | 009
.103
005
.110
008 | -013
.088
-009
.074
-013 | 016
.035
013
.040
016 | 017
.022
012
.027
016 | | | | 450
450
450
450
450 | 30°
30°
30°
30° | 888888 | 00000000 | .0 | 054
012
058
013
064
015
064 | : | .005
.062
.008
.070
.007
.072 | | 003
.094
.001
.104
.003
.111
003 | 007
.104
003
.112
006
.120
008 | | -009
.103
-005
.110
-008
.119
-010 | .088
.009
.074
.013
.080
.015 | 016
.035
013
.040
016
.045
019 | 017
.023
012
.027
016
.033
019 | | | | 450
450
450
450
450
800 | 200
200
200
200
200 | 8888888 | 000000000 | .0 | 054
012
058
013
064
015
064 | | .005
.062
.008
.070
.007
.072
.007 | | 003
.094
.001
.104
.008
.111
003
.108
008 | 007
.104
003
.112
006
.120
008
.115
005 | | 009
.103
005
.110
008
.119
010
.114 | -013
-088
-009
-074
-013
-015
-015
-077
-013 | 016
.035
013
.040
016
.045
019
.041 | 017
.023
013
.027
016
.032
019
.027 | | | | 450
450
450
450
450
450
450
450 | 100
200
200
300
300
200
200
400 | 88888888 | 00000000000 | | 054
012
058
013
064
015
064
014
071 | | .005
.062
.008
.070
.007
.073
.007
.075
.008 | | 003
.094
.001
.104
.008
.111
003
.106
008 | 007
.104
003
.113
006
.120
008
.115
005 | | -009
.103
-005
.110
-008
.119
-010
.114
-009 | -013
.088
-009
.074
-013
.080
-015
.077
-013 | 016
.035
013
.040
016
.045
019
.041
016 | 017
.023
012
016
.032
019
.027
016 | | | | 450
450
450
450
450
600
600
600 | 10°
20°
30°
30°
30°
40°
40°
60° | 888888888888 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .0 | 054
012
058
013
064
015
064
014
071
018 | | .005
.062
.008
.070
.007
.073
.007
.008
.076
.010 | | 003
.094
.001
.104
.003
.111
003
.106
008
.110 | 007
.104
003
.112
006
.120
008
.115
005
.125 | |
009
.103
005
.110
008
.119
010
.114
009
.124
008 | -013
.088
-009
.074
-013
.080
-015
.077
-013
.088
-015 | 016
.035
013
.040
016
.045
019
.051
019 | 017
.022
012
.037
016
.032
019
.027
016
040
022 | | | | 450
450
450
450
450
450
450
450
450
450 | 100
200
300
300
300
400
400
600 | 88888888888888 | ᇛ | .0 | 054
012
058
013
064
015
064
014
071
018
081 | | .005
.062
.008
.070
.007
.075
.008
.076
.010 | | 003
.094
.001
.104
.003
.111
003
.106
008
.110
.100
.114 | 007
.104
003
.112
008
.120
008
.115
005
.125
006 | | -009
.103
-005
.110
-008
.119
-010
.114
-009
.124
-008 | -013
.068
-009
.074
-013
.080
-015
.077
-013
.088
-015
.086
-012 | 016
.035
013
.040
016
.045
019
.051
019
.046
015 | 017
.022
012
.037
016
.032
019
.037
016
.040
022 | | | | 450
450
450
450
450
450
450
450
450
450 | 10°
20°
30°
30°
30°
40°
40°
60° | 888888888888 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 054
012
058
013
064
015
064
014
071
018 | | .005
.062
.008
.070
.007
.073
.007
.008
.076
.010 | | 003
.094
.001
.104
.003
.111
003
.106
008
.110 | 007
.104
003
.112
006
.120
008
.115
005
.125 | | 009
.103
005
.110
008
.119
010
.114
009
.124
008 | -013
.088
-009
.074
-013
.080
-015
.077
-013
.088
-015
.088
-018
.088 | 016
.035
013
.040
016
.045
019
.041
015
.051
019
.048
015 | 017
.022
012
.037
016
.032
019
.027
016
040
022 | | | | 450
450
450
450
450
450
450
450
450
450 | 10°
20°
30°
30°
30°
40°
40°
60°
60° | 88888888888888 | On' | | 054
012
058
013
064
015
064
014
071
081
081
085
085 | ED SPO | .005
.062
.008
.070
.007
.073
.007
.075
.008
.010
.084
.014 | | 003
.094
.001
.104
.003
.110
003
.106
000
.114
.003
.116
.003 | 007
.104
003
.112
008
.115
005
.125
005
.123
002
.128
004 | | -009
.103
-005
.110
-008
.119
-010
.114
-009
.124
-008
.123
-006
.128
-007 | -013
.088
-009
.074
-013
.080
-015
.077
-013
.088
-015
.086
-013 | 016
.035
013
.040
016
.045
019
.041
015
.046
015 | 017
.023
012
.027
016
.032
019
.027
016
.040
022
.031
016 | | | | 450
450
450
450
450
800
800
800
800
800
800 | 10°
20°
30°
30°
30°
20°
40°
40°
60°
60°
60° | 888888888888888888888888888888888888888 | On' | | 054
012
058
013
064
015
064
014
071
081
081
085
085 | ED SPO | .005
.062
.008
.070
.007
.073
.007
.075
.008
.010
.084
.014 | LONE 1 | 003
.094
.001
.104
.003
.110
003
.106
000
.114
.003
.116
.003 | 007
.104
003
.112
008
.115
005
.125
005
.123
002
.128
004 | | -009
.103
-005
.110
-008
.119
-010
.114
-009
.124
-008
.123
-006
.128
-007 | -013
.088
-009
.074
-013
.080
-015
.077
-013
.088
-015
.086
-013 | 016
.035
013
.040
016
.045
019
.041
015
.046
015 | 017
.023
012
.027
016
.032
019
.027
016
.040
022
.031
016 | | | | 450
450
450
450
450
650
650
650
600
600
600 | 10°
20°
20°
30°
30°
30°
40°
60°
60°
60° | 888888888888888888888888888888888888888 | On',
On', | FORWARD | 054
013
058
013
064
015
0015
0015
0018
0025
0083
0025
0083 | ED SPO | .005
.062
.008
.070
.070
.077
.075
.008
.010
.084
.014 | LONE 1 Up | 003
.094
.001
.104
.003
.108
003
.110
.000
.114
.003
.116
.003 | 007
.003
.112
006
.120
005
.125
005
.123
002
.126
004 | .045 | -009
.103
-005
.110
-008
.119
-010
.114
-009
.124
-008
.123
-006
.128
-007 | -013
.088
-009
.074
-013
.080
-015
.077
-013
.088
-013
.087
-013 | 016
.035
.013
.040
016
.045
019
.041
019
.046
015
.047
016 | -017
.027
-012
.027
-018
.032
-019
.037
-016
.040
-022
.031
-016
.032 | | | | 450
450
450
450
450
860
860
860
860
860
860
860
860
860
86 | 10° 20° 30° 30° 30° 40° 40° 60° 60° 60° 60° | 888888888888888888888888888888888888888 | On',
On', | FORWARD | 054
012
058
013
064
015
064
015
0018
0018
0025
0025
0025
0025 | ED SPO | .005
.062
.008
.070
.007
.007
.007
.007
.010
.084
.014
.088
.014 | LONE 1
Up
.034
.004 | 003
.094
.001
.104
.003
.110
.000
.110
.000
.116
.003
.116
.003
.003
.003
.003
.003
.003
.003
.00 | 007
.003
.112
006
.120
008
.115
005
.125
002
.128
004
OEHT | 045
-002 | -009
.103
-005
.110
-008
.119
-010
.114
-009
.124
.123
-006
.123
-006 | -013
.088
.009
.074
.013
.080
.015
.015
.086
-013
.086
-013
.087
.087 | - 016 | 017
.027
012
.027
018
019
.027
016
.023
.031
016
.032
016 | | | | 450
450
450
450
450
650
650
650
650
650
650
650
650
650
6 | 10°
20°
20°
30°
30°
30°
40°
40°
60°
60°
60°
60° | 888888888888888888888888888888888888888 | On',
On', | FORWARD | 054
013
058
013
064
015
081
071
081
085
083
085
085
083 | ED SPO | .005
.062
.008
.070
.070
.073
.007
.008
.014
.014
.014
.014
.014
.015
.005 | LONE 1
Up
.034
.004
.052 | 003
.094
.001
.104
.003
.111
003
.110
.003
.114
.003
.114
.003
.115
.009
.009
.009 | 007
.104
.003
.112
008
.125
005
.125
003
.128
004
.128
004 | .045
-002
.078 | -009
.103
-005
.110
-008
.119
-010
.114
-009
.124
.123
-006
.123
-006 | -013
.088
-074
-013
.080
-015
.077
-013
.088
-015
.088
-015
.088
-013
-013 | - 016 | -017
.028
-012
.027
-018
.032
-019
.037
-016
.040
-022
.031
-016
.032
-016 | | | | 450
450
450
450
850
850
850
850
850
850
850
850
850
8 | 10°
20°
20°
20°
20°
30°
30°
40°
40°
60°
80°
80°
60° | 888888888888888888888888888888888888888 | On',
On', | FORWARD | 054
013
058
013
064
014
071
025
081
025
085
081
006
003
003
003
003
003 | ED SPO | .005
.062
.008
.070
.007
.075
.008
.010
.084
.014
.088
.014
.015
.005
.037
.008 | .034
.004
.053
.005
.072 | 003
.094
.001
.104
.003
.110
.000
.110
.000
.116
.003
.116
.003
.116
.003
.003
.004
.003
.004
.005 | 007
003
006
120
005
005
005
002
126
004
004
005
005
005
005
005 | .045
.002
.078
.008 | -009 .103 .103 .105 .110 .008 .114 .008 .124 .008 .128 .128 .007 | -013
.088
.074
.015
.080
.077
.015
.077
.088
.015
.088
.015
.087
.013
.087
.013
.087
.013 | - 016 | -017
.023
-012
-027
-018
.037
-019
.037
-016
.032
-016
.033
-016
.033
-016
.033
-016 | | | | 450
450
450
450
450
450
450
450
450
450 | 100
200
200
300
300
300
200
400
600
600
600
600
000
000 | 888888888888888888888888888888888888888 | On',
On', | FORWARD | 054
015
013
084
014
014
011
018
081
081
083
085
083
085
083
003
003
003
003
003
003
003 | ED SPO | .005
.062
.008
.070
.077
.073
.007
.008
.014
.084
.014
.084
.015
.005
.035
.039
.040
.059
.059 | JONE 1 Up .034 .004 .053 .005 | 003
.094
.001
.104
.003
.110
.003
.110
.003
.110
.003
.114
.003
.114
.003
.115
.009
.000
.000
.000
.000
.000
.000 | 007
003
112
008
125
005
125
002
128
002
004
004
005
005
005
005
005 | .045
.002
.078
.008 | -009 .103 .103 .103 .110 .108 .114 .009 .124 .008 .128 .128 .006 .128 .103 .115 | -013
.088
.074
.015
.077
.088
.015
.088
.013
.088
.013
.088
.013
.088
.013
.088
.013
.088 | -016
.035
.040
-016
.045
-019
.041
-016
.051
-019
.048
-015 | -017
.027
-012
.037
-018
.032
-019
.040
-028
.031
-016
.031
-016
.031
-016
.031
-016
.031
-016 | | | | 450
450
450
450
450
650
650
650
650
650
650
650
650
650
6 |
10°
20°
20°
20°
20°
30°
30°
40°
40°
60°
80°
80°
60° | 888888888888888888888888888888888888888 | On' | FORWARD | 054
013
058
013
064
014
071
025
081
025
085
081
006
003
003
003
003
003 | ED SPO | .005
.062
.008
.070
.007
.075
.008
.010
.084
.014
.088
.014
.015
.005
.037
.008 | .034
.004
.053
.005
.072 | 003
.094
.001
.104
.003
.110
.000
.110
.000
.116
.003
.116
.003
.116
.003
.003
.004
.003
.004
.005 | 007
003
006
120
005
005
005
002
126
004
004
004 | .045
.002
.078
.008 | -009
.103
.103
.110
-008
.119
-010
.114
-009
.124
-006
.123
-006
.128 | -013
.088
.074
.013
.080
.015
.075
.088
.015
.088
.013
.087
.013
.087
.013
.052
.053
.071
.002
.053
.071 | -016
.035
-013
.040
-016
.045
-019
.041
-016
.051
-016
.051
-016
.046
-015
.048 | -017
.023
-012
-027
-018
.037
-019
.037
-016
.032
-016
.033
-016
.033
-016
.033
-016 | | | # TABLE VII. FORCE TESTS. 10 BY 60 INCH CLARK Y WIRG WITH HANDLEY PAGE FULL-SPAN SLOT OPEN AT ALL ANGLES OF ATTACK - PLAIN ALLERONS AND SPOTLERS Yaw = -20° R.H. = 609,000 Velocity = 80 m.p.h. | | | | | | Yaw * | -200 | R.N | . = 609 | 9,000 | Velo | city = | 80 m., | p.h. | | | | | |-----------------|-------------|------------|---------------------|--------------------------------|---------------------|-----------------------------|--|-----------------|-------------|-------------|-----------------|-------------|--------------|-----------------|-------------|----------------------|-------------------| | | | | | | PLA | IN AIL | eroys | 25 PER | CENT | c BY | 40 PE | R CENT | <u>b</u> | | | | | | | | | α | 5° | o° | 5° | 100 | 15 ⁰ | 30° | 240 | 25 ⁰ | 26° | 30° | 35 ⁰ | 40° | 500 | 60° | | | δ up | €, dn. | | | | | Aile | rons le | ocked · | - Neut: | ral | | | | | | | | | 0000 | 0000 | 9800
1875
1 | 880.0-
880.
800.
800. | .050 | .053 | .085 | .138 | .204
019 | .269
035 | .283
038 | 1.326 | 058 | .597 | .719 | 0.963
.872
057 | .98 | | | L. | | n | | .002 | | L | Equal 1 | L | <u> </u> | .020 | .024 | .002 | .040 | | .001 | | | | 25° | 25° | Oı' | | .068 | | .068 | | .072 | .068 | | .051 | .036 | .020 | .011 | | | | | 100 | | <u> </u> | | 1000 | L | | ge dif: | <u>'</u> | | | 000 | ,00. | 000 | 1020 | L | L | | | 35°
35° | 150
150 | 02'
0n | | .070 | | .071 | | .078 | .077 | | .065 | .050 | .037 | .023 | | | | | 100 | 10 | Un. | L | .002 | | <u> </u> | me dif: | | 027 | | -,055 | 037 | 038 | us | | L | | | 50°
50° | 70
70 | Oz' | | .071 | | .078 | | .083 | | | .053 | .061 | .055 | .038
038 | | | | | 100 | L_` | n | | 1020 | L | | <u>L</u> | p-only | 1035 | L | 020 | 050 | 001 | 020 | l | | | | 60° | 00 | 07',
0n | | .068 | | .075 | | .081 | .087 | | .058 | 880.
880 | .055 | .038 | | | | | | 1 | | IN VIP | EBUNE S |) | OPY# | | 40 PM | - COL MAI | <u> </u> | OFTERD AT | . PTGG | י פחז חיי | | <u></u> | | | | | | | | | | | oked - | | | | | | | | | | | | 0000 | 0000 | 2000
B.~GB | 149
.091
.013 | .146
.050
005 | .461
.045
008
.002 | 010 | 007 | .182 | .241
030 | .270
048 | 294 | .409
050 | .553
~.080 | | .945
.892
058 | .79
1.02
04 | | | | | <u> </u> | | | | <u>. </u> | i-down | | <u> </u> | ed up : | | .000 | .025 | | | | | | 25° | 25°
25° | 0,1
0,1 | | .070 | | .071 | | .078
083 | .077 | | .065
029 | .050
037 | .037
~.038 | .023 | | | | | | | | | | Diffe | rentia | l No. | 3 (Fr | om rig | ged up | | | L | | · | | | | 50° | 70
70 | 0,1
0,1 | | .083 | | .089 | | .075
007 | .079
012 | | .077
015 | .055
019 | .056
037 | .034 | | | | | <u> </u> | | | | PLAIN | AILER | ONS 25 | PER O | CHT c | BY 44 |) PER | CERT | p | <u> </u> | | | <u> </u> | | | | <u> </u> | CON | BINED 1 | TH RE | AR-HI | | | | ~ | o B | 40 P | er orn | <u>8</u> | | | | | 80° | 35° | 8, dn. | a.' | | .071 | | .070 | Equal : | .087 | | | .077 | 026 | 033 | - 060 | | Γ | | 80° | 350 | 25° | 0,'
0 <u>n</u> ' | | .012 | | .003 | L | 003 | 001 | l | .003 | .005 | .518 | .086 | | L | | 900 | 350 | 150 | 0.1 | | .073 | | .073 | ge dif: | .090 | .087 | . 1 | .083 | .033 | 019 | 050 | | | | 80° | 35°
35° | 15°
15° | o,' | | .019 | | .010 | L | .004 | .005 | L | .006 | .007 | .013 | .034 | | <u> </u> | | 800 | 60° | 70 | 0-1 | | .073 | | .072 | ne dif | .091 | .093 | . 2 | .089 | .040 | 005 | 030 | | | | 80° | 50° | 70
70 | 0,1
0,1 | | .024 | | .017 | L | .012 | .011 | Ĺ | .011 | .011 | .015 | .023 | L | | | 80 ₀ | 600 | 00 | 0-1 | | .069 | | .069 | Up- | .092 | .091 | | ,089 | ,043 | .000 | 039 | | Γ | | 800 | 600 | 00 | o _n ' | | .029 | | sso. | | .018 | .018 | Ĺ | .017 | .015 | .018 | .025 | | <u> </u> | | | | | | FORWAF | D-HING | ED SP | DILERS | | 10 PE | ROENT | o B | 60 PI | ER CENT | <u> </u> | | | | | 800 | 00 | 00 | O ₁ ¹ | | .024 | | .035 | .050 | .068 | .078 | | .078 | .044 | | 035 | | | | 800 | 00 | 00 | O ₁ , | | .027 | | .029 | .029 | .027 | .028 | | .028 | .025 | ' | .035 | | | TABLE VIII. ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH HANDLEY PAGE FULL-SPAN SLOT C_{λ} is given for forced rotation at $p^{*b}/2V = 0.05$ { (+) Aiding the rotation $p^{!b}/2V$ values are for free rotation $Yaw = 0^{\circ}$ Velocity = 80 m.p.h. R.N. = 609,000 | | | <u> </u> | 0 | -0 | 0.00 | 500 | | | 1 0-0 | 1 - 0 | | | | | |--------------------------------|------------------|----------|---------|---------|----------|----------|------------------|----------|------------------|----------------|--------|--------|--------------|--------------| | | α | o° | 130 | 16° | 20° | 220 | 240 | 25° | 26 ⁰ | 270 | 30° | 32° | 35° | 40° | | | <u> </u> | | | | Ailer | cons loc | ced - <u>N</u> e | utral a | t O ^O | | | | | | | (+)
Rota- | σ _λ | -0.0243 | -0.0239 | -0.0278 | -0.0248 | | -0.0148 | | | 0.0152 | 0.0140 | 0.0097 | 0.0110 | 0.0095 | | tion
(clock-
wise) | p'0
2 V | | | _ | | | | 0.214 | | | .403 | | .458 | .543 | | (-) Rota- tion (coun- | ^σ λ | 0245 | 0246 | 0260 | 0200 | | 0125 | | .0160 | .0168 | .0190 | .0188 | .0208 | .0160 | | ter
clock-
wise) | 2 v | | | | | | | .086 | | | .387 | | .4 65 | .582 | | | : | | | | Ailerons | locked | - Neutra | al rigge | ed up 10 |) ⁰ | | | | - | | (+)
Rota- | сy | 0238 | 0233 | 0281 | | -0.0243 | | 0016 | 1 | .0152 | .0130 | .0110 | .00ജ | .0084 | | tion
(clock-
wise) | V S | | | | | | | | | | .372 | | .437 | .533 | | (-)
Rota-
tion
(coun- | σ _λ | 0305 | 0220 | 0257 | 0225 | 0210 | : | 0135 | .0145 | .0175 | .0180 | .0180 | .0150 | .0150 | | ter
clock-
wise) | P ₁ p | | | | | | | .071 | | | .372 | | .449 | .533 | TABLE IX. ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH HANDLEY PAGE FULL-SPAN SLOT C_{λ} is given for forced rotation at $p^{\dagger}b/2V = 0.05 \begin{cases} (+) \text{ Aiding the rotation} \\ (-) \text{ Damping the rotation} \end{cases}$ | | | | | Yaw | = -20° | V | elocity | = 80 m. | p.h. | R. | N. = 60 | 9,000 | | | | | |--|----------------|--------------|--------------|-----------------|--------|------|----------|---------------|---------------|--------|----------------|-------|---------------------------------------|---------------------------------------|-------|-------------| | | α | 00 | 12° | 16 ⁰ | 18º | 20° | 220 | 23° | 240 | 25° | 260 | 280 | 30° | 32° | 35° | 40° | | (+) Rota- tion (clock- wise) | с _х | 0318 | 0376 | 0393 | 0403 | 0443 | Ailerons | | | | | 0393 | 0 4 08 | 0448 | 0553 | 0636 | | (-) Rota- tion (coun- ter clock- wise) | O _N | 0140 | 0065 | 0075 | 0030 | | | •014 5 | .0272 | | | .0608 | .0710 | .0778 | .0875 | .0800 | | | ļ | | 7 | · | | Aile | rons loc | ked - N | <u>eutral</u> | rigged | up 10° | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | | (+) Rota- tion (clock- wise) | СУ | 0263 | 0328 | 0348 | | | 0438 | | | | j | 0416 | - .044 8 | 0463 | 0653 | 0643 | | (-) Rota- tion (coun- ter clock- wise) | ማ | 0190 | 0085 | 0110 | | 0012 | .0050 | | | .0260 | .0290 | .0477 | .0658 | .0690 | .0795 | .0870 | ORITERIOUS SHOWING RELATIVE MURITS OF COMPROLS FOR WING WITH TIP SLOTS to There the maximum yawing moment cocurred below maximum deflection, the latters indicate the deflection of the up alleron as follows: R = 10°, b = 18°, ° = 20° d = 20°, ° = 40°. ^{*} Value at or = 400. Maximum not yet reached. Allerons alone deflected for this condition. h Data from Reference 1, Farts I and V. | Subject | | | Plain silerons 25 per cent chord by
40 per cent semispan (assumed stan-
dard size)
Plain wing | | | | Flain silerons
full-span slot | | | | Plain silerons
Neutral rigged
up 10°. Full-
span slot | | | | | | Spoiler
0.10 c
by 0.60
b/2. Full | |--|---|---------------------------------|--|--|-------------------|----------------|----------------------------------|---|--|----------------|--|--|-------------------------------|-------------------|--|-------------
---| | | | | Standard
36° up
25° dn. | Differential No.1
350 up
150 dn. | Differential No.8 | Up-only
600 | 250 m | Differen-
tial No.1
250 up
15° dn. | Differen-
timl No.3
500 up.
Todn. | Up-only
60° | | Differen-
tial No.2
500 up
70 dn. | Standard
250 up
25° dn. | Differential No.1 | Differential No. 2
500 up
70 dn. | | span slo | | fing area or
minimum spood | Maxis | | 1.270 | 1.270 | 1.270 | 1.870 | 1.830 | 1.830 | 1.550 | 1.830 | 1.735 | 1.735 | 1.850 | 1.880 | 1.830 | 1.830 | 1.830 | | Speed range | L/D at Or. | | 79.4 | 79.4 | 19.4 | 79.4 | 114.2 | 114.2 | 114.3 | 114.2 | 108.0 | 103.0 | 114.8 | 114.2 | 114.3 | 114.8 | 114.2 | | Nute of olimb | | | 15.9 | 15.9 | 15.9 | 15.9 | 15,9 | 15.9 | 15.9 | 15.9 | 17,1 | 17.1 | 15.9 | 15.9 | 15.9 | 15.9 | 15.9 | | Lateral con-
trollability | | t = 0° | 0.204 | 0,308 | 0.204 | 0.196 | 0,204 | 0.202 | 0,204 | 0.198 | 0.349 | 0.330 | 0,207 | 0,174 | 0.136 | 0.135 | 0.136 | | | | i = 100
Not open | .075 | .074 | .074 | .072 | .074 | .072 | .073 | .069 | ,0°a | .089 | .115 | .108 | .091 | ,089 | .076 | | | R0 (| (= 20° | .038 | .061. | .055 | .054 | .047 | .048 | .045 | .047 | .048 | .041 | .083 | .077 | .070 | .065 | .069 | | | 360 | r = 30° | .017 | .005 | .00a | .002 | 820. | .083 | .020. | .050 | .033 | .098 | .068 | .059 | .052 | .058 | ,058 | | leteral con-
trol with
mide slip | Maxisms of at which controls will belence G_L^1 due to 20° yaw | | 20° | 80° | 21°0 | 220 | ar° | 380 | 27.0 | 52° | 390 | 200 | 320 | 330 | 54° | 36° | 260- | | faming moments
due to com-
trols | | r = 00
Not olosed | 007 | p008 | 0.000 | 0,038 | 007 | 800,008 | p⊶.002
0010 | 0.016 | e0.008 | 0.00.6 | 0.001 | 0.008 | 0.012 | 0.013 | 0.017 | | (+)Favorable
(-)Unfavorable | | i ≃ 10 ⁰
Not open | -,004 | p=.003 | | .01.8 | ,005 | 800d | .010
b003 | .018
-:001 | .003 | .015 | .03.5 | .019 | ,086 | .089 | .085 | | | an c | r = 30° | 020 | b007 | 800.
800d | .015
800 | ~.005 | .005
005 | p002 | .018
4.001 | .003 | d015 | .090 | °.033 | .039 | .043 | -063 | | | o _n (| ı = 30° | 008 | 008 | b007 | b004 | 018 | p=.012 | °014 | .004
b010 | a011 | .005
010 | .015 | .085 | .030 | .038 | .045 | | Lateral sta-
bility
δ_{1} and δ_{2} =
0°) | of for initial installing of for initial installing | | 180 | 190 | 180 | 1,80 | 25° | 250 | 260 | 350 | 250 | 250 | 35° | \$15°0 | 250 | 35 ° | 260 | | | 0.00 | tax = 00 | 170 | 170 | 170 | 170 | 25° | 35° | 270 | 250 | 250 | #5° | 85° | 29° | . 350 | 250 | 35° | | | D1# | O TRY = /200 | 110 | л _о | 110 | 110 | 190 | 190 | 190 | 190 | 21° | 3J.º | 190 | 190 | 190 | 19° | 190 | | | Max
Ox | at p'b/27 = | | | | | | | | | | | | | | | , | | | | Yaw = 00 | .049 | .048 | .048 | .048 | .021 | .070 | .021 | .031 | .018 | ,018 | .020. | .020. | .021. | .021 | ,021 | a to d Where the maximum yearing moment coordinate below maximum deflection, the letters indicate the deflection of the up mileron as follows: a = 100, b = 150, 0 = 200, d = 50. ** Units from Reference 1, Parts I and V. 11011 N.A.C.A. Technical Bote No.443 Fig.1 Details of Clark Y wing with Handley Page slots and ordinary allerons. ordinary ailerons, and rear hinged spoilers. Fig. 3 Effect on $C_{l_{max}}$ of spoiler location along span of wing with full-span slot and medium allerons. Fig. 7 Aileron linkage systems, assumed maximum deflections. ્ય Fig. 4 Details of Clark Y wing with ordinary ailerons, interceptors, and Handley Page tip slots. Fig. 5 Details of Clark Y wing with Handley Page slots and large spoiler. Fig. 8 Lift, drag, and center of pressure for Clark Y wing with 50 per cent b/2 tip slots and for plain wing. Yaw = 0° Fig.10 Lift, drag, and center of pressure for Clark Y wing with full-span slot and for plain wing. Yaw = 0° Fig. 9 Rolling-moment coefficients due to rolling at $\frac{p'b}{2V} = 0.05$ and yaw=0° for Clark Y wing with 50 per cent b/2 tip slots and for plain wing. Fig.ll Rolling-moment coefficients due to rolling at $\frac{p'b}{2V}$ = 0.05 and yaw = 0° for Clark Y wing with full-span slot and for plain wing. Figs. 9,11